计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (11): 2609-2618.DOI: 10.3778/j.issn.1673-9418.2103082
收稿日期:
2021-03-24
修回日期:
2021-06-09
出版日期:
2022-11-01
发布日期:
2021-06-17
通讯作者:
+ E-mail: penglimail2002@163.com作者简介:
陈璠(1996—),女,辽宁兴城人,硕士研究生,主要研究方向为深度学习、行人重识别。基金资助:
Received:
2021-03-24
Revised:
2021-06-09
Online:
2022-11-01
Published:
2021-06-17
About author:
CHEN Fan, born in 1996, M.S. candidate. Her research interests include deep learning and per-son re-identification.Supported by:
摘要:
针对行人重识别(Person Re-ID)过程中,多分支结构的网络模型在提取行人特征时缺乏异构特征的问题,提出一种异构分支关联特征融合的行人重识别算法。训练阶段,将OSNet与注意力机制相结合作为主干共享网络,以学习到具有更强显著性和区分性的行人关键特征;将分支网络输出的行人特征进行水平均等分割,再提取关联条纹特征,从而全面利用位于条纹间的综合信息;设计异构特征提取模块,以增加模型学习差异特征所需的结构多样性。推理阶段,将多个特征向量融合成一个新的特征向量,再进行相似性判断。将该方法在Market-1501、DukeMTMC-reID数据集上进行有效性实验验证并对结果进行分析,所提算法能够提高行人重识别的准确率,模型所提取的特征具有较强的鲁棒性和判别力。
中图分类号:
陈璠, 彭力. 异构分支关联特征融合的行人重识别[J]. 计算机科学与探索, 2022, 16(11): 2609-2618.
CHEN Fan, PENG Li. Person Re-identification Based on Heterogeneous Branch Correlative Features Fusion[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2609-2618.
模型 | rank-1 | mAP |
---|---|---|
v1 | 93.4 | 85.9 |
v1+v2 | 94.4 | 87.7 |
v1+v3 | 95.6 | 88.9 |
v1+v2+v3 | 96.7 | 89.5 |
表1 Experimental results with different branches on Market-1501 dataset 单位:%
Table 1
模型 | rank-1 | mAP |
---|---|---|
v1 | 93.4 | 85.9 |
v1+v2 | 94.4 | 87.7 |
v1+v3 | 95.6 | 88.9 |
v1+v2+v3 | 96.7 | 89.5 |
模型 | rank-1 | mAP |
---|---|---|
v1 | 88.5 | 76.9 |
v1+v2 | 89.8 | 78.7 |
v1+v3 | 89.9 | 79.5 |
v1+v2+v3 | 91.7 | 81.6 |
表2 Experimental results with different branches on DukeMTMC-reID dataset 单位:%
Table 2
模型 | rank-1 | mAP |
---|---|---|
v1 | 88.5 | 76.9 |
v1+v2 | 89.8 | 78.7 |
v1+v3 | 89.9 | 79.5 |
v1+v2+v3 | 91.7 | 81.6 |
注意力机制 | rank-1 | mAP |
---|---|---|
无 | 96.1 | 89.0 |
有 | 96.7 | 89.5 |
表3 Experimental results of attention modules on Market-1501 dataset 单位:%
Table 3
注意力机制 | rank-1 | mAP |
---|---|---|
无 | 96.1 | 89.0 |
有 | 96.7 | 89.5 |
注意力机制 | rank-1 | mAP |
---|---|---|
无 | 91.0 | 81.3 |
有 | 91.7 | 81.6 |
表4 Experimental results of attention modules on DukeMTMC-reID dataset 单位:%
Table 4
注意力机制 | rank-1 | mAP |
---|---|---|
无 | 91.0 | 81.3 |
有 | 91.7 | 81.6 |
方法 | rank-1 | mAP |
---|---|---|
多重ID损失 | 94.8 | 85.9 |
单一ID损失 | 96.7 | 89.5 |
表5 Experimental results with different losses on Market-1501 dataset 单位:%
Table 5
方法 | rank-1 | mAP |
---|---|---|
多重ID损失 | 94.8 | 85.9 |
单一ID损失 | 96.7 | 89.5 |
方法 | rank-1 | mAP |
---|---|---|
多重ID损失 | 89.9 | 77.8 |
单一ID损失 | 91.7 | 81.6 |
表6 Experimental results with different losses on DukeMTMC-reID dataset 单位:%
Table 6
方法 | rank-1 | mAP |
---|---|---|
多重ID损失 | 89.9 | 77.8 |
单一ID损失 | 91.7 | 81.6 |
模型 | rank-1 | mAP |
---|---|---|
SONA | 95.7 | 88.7 |
Auto-ReID | 94.5 | 85.1 |
CAMA | 94.7 | 84.5 |
MGN | 95.7 | 86.9 |
Bag Of Tricks | 94.5 | 85.9 |
St-ReID | 98.1 | 87.6 |
MHN | 95.1 | 85.9 |
OSNet | 94.8 | 84.9 |
IAN | 94.4 | 83.1 |
Ours | 96.7 | 89.5 |
表7 Comparison with mainstream algorithms on Market-1501 dataset 单位:%
Table 7
模型 | rank-1 | mAP |
---|---|---|
SONA | 95.7 | 88.7 |
Auto-ReID | 94.5 | 85.1 |
CAMA | 94.7 | 84.5 |
MGN | 95.7 | 86.9 |
Bag Of Tricks | 94.5 | 85.9 |
St-ReID | 98.1 | 87.6 |
MHN | 95.1 | 85.9 |
OSNet | 94.8 | 84.9 |
IAN | 94.4 | 83.1 |
Ours | 96.7 | 89.5 |
模型 | rank-1 | mAP |
---|---|---|
SONA | 89.3 | 78.1 |
Auto-ReID | 88.5 | 75.1 |
CAMA | 85.8 | 72.9 |
MGN | 88.7 | 78.4 |
Bag Of Tricks | 86.4 | 76.4 |
St-ReID | 94.4 | 83.9 |
MHN | 89.1 | 77.2 |
OSNet | 88.6 | 73.5 |
IAN | 87.1 | 73.4 |
Ours | 91.7 | 81.6 |
表8 Comparison with mainstream algorithms on DukeMTMC-reID dataset 单位:%
Table 8
模型 | rank-1 | mAP |
---|---|---|
SONA | 89.3 | 78.1 |
Auto-ReID | 88.5 | 75.1 |
CAMA | 85.8 | 72.9 |
MGN | 88.7 | 78.4 |
Bag Of Tricks | 86.4 | 76.4 |
St-ReID | 94.4 | 83.9 |
MHN | 89.1 | 77.2 |
OSNet | 88.6 | 73.5 |
IAN | 87.1 | 73.4 |
Ours | 91.7 | 81.6 |
[1] | 姚足, 龚勋, 陈锐, 等. 面向行人重识别的局部特征研究进展、挑战与展望[J]. 自动化学报, 2021, 47(12): 2742-2760. |
YAO Z, GONG X, CHEN R, et al. Research progress, chal-lenge and prospect of local features for person re-identi- fication[J]. Acta Automatica Sinica, 2021, 47(12): 2742-2760. | |
[2] | SUN Y, ZHENG L, YANG Y, et al. Beyond part models: per-son retrieval with refined part pooling (and a strong con-volutional baseline)[C]// LNCS 11208: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 501-518. |
[3] | WANG G S, YUAN Y F, CHEN X, et al. Learning discri-minative features with multiple granularities for person re-identification[C]// Proceedings of the ACM International Con-ference on Multimedia, Seoul, Oct 22-26, 2018. New York: ACM, 2018: 274-282. |
[4] | ZHENG F, DENG C, SUN X, et al. Pyramidal person re-identification via multi-loss dynamic training[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pat-tern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 8514-8522. |
[5] | SUH Y, WANG J, TANG S, et al. Part-aligned bilinear re-presentations for person re-identification[C]// LNCS 11218:Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 418-437. |
[6] | ZHAO H Y, TIAN M Q, SUN S Y, et al. Spindle Net: per-son re-identification with human body region guided fea-ture decomposition and fusion[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recog-nition, Honolulu, Jul 21-26, 2017. Washington: IEEE Com-puter Society, 2017: 907-915. |
[7] | ZHAO L M, LI X, ZHUANG Y T, et al. Deeply-learned part-aligned representations for person re-identification[C]// Pro-ceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 3239-3248. |
[8] | ZHENG L, HUANG Y J, LU H C, et al. Pose invariant em-bedding for deep person re-identification[J]. IEEE Transac-tions on Image Processing, 2017, 28(9): 4500-4509. |
[9] | 贲晛烨, 徐森, 王科俊. 行人步态的特征表达及识别综述[J]. 模式识别与人工智能, 2012, 25(1): 71-81. |
BEN X Y, XU S, WANG K J. Review on pedestrian gait feature expression and recognition[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(1): 71-81. | |
[10] |
YAO H, ZHANG S, ZHANG Y, et al. Deep representation learning with part loss for person re-identification[J]. IEEE Transactions on Image Processing, 2019, 28(6): 2860-2871.
DOI URL |
[11] | ZHOU K, YANG Y, CAVALLARO A, et al. Omni-scale feature learning for person re-identification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Com-puter Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3701-3711. |
[12] | SONG C F, HUANG Y, OUYANG W L, et al. Mask-guided contrastive attention model for person re-identification[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 1179-1188. |
[13] | CHEN T L, DING S J, XIE J Y, et al. ABD-Net: attentive but diverse person re-identification[C]// Proceedings of the 2019 IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 8350-8360. |
[14] | 李文涛, 彭力. 多尺度通道注意力融合网络的小目标检测算法[J]. 计算机科学与探索, 2021, 15(12): 2390-2400. |
LI W T, PENG L. Small objects detection algorithm with multi-scale channel attention fusion network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2390-2400. | |
[15] |
卓天天, 桑庆兵. 注意力机制与复合卷积在手写识别中的应用[J]. 计算机科学与探索, 2022, 16(4): 888-897.
DOI |
ZHUO T T, SANG Q B. Application of attention mecha-nism and composite convolution in handwriting recognition[J]. Journal of Frontiers of Computer Science and Techno-logy, 2022, 16(4): 888-897. | |
[16] | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation net-works[C]// Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington: IEEE Computer Society, 2018: 7132-7141. |
[17] | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer So-ciety, 2016: 770-778. |
[18] | WEN Y D, ZHANG K P, LI Z F, et al. A discriminative fea-ture learning approach for deep face recognition[C]// LNCS 9911: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Sprin-ger, 2016: 499-515. |
[19] | CHENG D, GONG Y H, ZHOU S P, et al. Person re-identification by multi-channel parts-based CNN with im-proved triplet loss function[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recogni-tion, Las Vegas, Jun 27-30, 2016. Washington: IEEE Compu-ter Society, 2016: 1335-1344. |
[20] | ZHENG L, SHEN L, TIAN L, et al. Scalable person re-identification: a benchmark[C]// Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1116-1124. |
[21] | RISTANI E, SOLERA F, ZOU R S, et al. Performance measures and a data set for multi-target, multi-camera trac-king[C]// LNCS 9914: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-10, 15-16, 2016. Cham: Springer, 2016: 17-35. |
[22] | XIONG R, YANG Y, HE D, et al. On layer normalization in the transformer architecture[C]// Proceedings of the 37th In-ternational Conference on Machine Learning, Jul 13-18, 2020: 10524-10533. |
[23] | XIA N, GONG Y, ZHANG Y Z, et al. Second-order non-local attention networks for person re-identification[C]// Procee-dings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 3759-3768. |
[24] | QUAN R, DONG X, WU Y, et al. Auto-ReID: searching for a part-aware ConvNet for person re-identification[C]// Pro-ceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscata-way: IEEE, 2019: 3749-3758. |
[25] | HE T, ZHANG Z, ZHANG H, et al. Bag of tricks for image classification with convolutional neural networks[C]// Pro-ceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Pisca-taway: IEEE, 2019: 558-567. |
[26] | WANG G, LAI J, HUANG P, et al. Spatial-temporal person re-identification[C]// Proceedings of the 33rd AAAI Confer-ence on Artificial Intelligence, the 31st Innovative Applica-tions of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelli-gence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 8933-8940. |
[27] | CHEN B, DENG W, HU J. Mixed high-order attention net-work for person re-identification[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Se-oul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 371-381. |
[28] | YANG W, HUANG H, ZHANG Z, et al. Towards rich feature discovery with class activation maps augmentation for person re-identification[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1389-1398. |
[29] | HOU R, MA B, CHANG H, et al. Interaction and aggrega-tion network for person re-identification[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 9317-9326. |
[1] | 吕晓琦, 纪科, 陈贞翔, 孙润元, 马坤, 邬俊, 李浥东. 结合注意力与循环神经网络的专家推荐算法[J]. 计算机科学与探索, 2022, 16(9): 2068-2077. |
[2] | 张祥平, 刘建勋. 基于深度学习的代码表征及其应用综述[J]. 计算机科学与探索, 2022, 16(9): 2011-2029. |
[3] | 李冬梅, 罗斯斯, 张小平, 许福. 命名实体识别方法研究综述[J]. 计算机科学与探索, 2022, 16(9): 1954-1968. |
[4] | 任宁, 付岩, 吴艳霞, 梁鹏举, 韩希. 深度学习应用于目标检测中失衡问题研究综述[J]. 计算机科学与探索, 2022, 16(9): 1933-1953. |
[5] | 杨才东, 李承阳, 李忠博, 谢永强, 孙方伟, 齐锦. 深度学习的图像超分辨率重建技术综述[J]. 计算机科学与探索, 2022, 16(9): 1990-2010. |
[6] | 曾凡智, 许露倩, 周燕, 周月霞, 廖俊玮. 面向智慧教育的知识追踪模型研究综述[J]. 计算机科学与探索, 2022, 16(8): 1742-1763. |
[7] | 安凤平, 李晓薇, 曹翔. 权重初始化-滑动窗口CNN的医学图像分类[J]. 计算机科学与探索, 2022, 16(8): 1885-1897. |
[8] | 刘艺, 李蒙蒙, 郑奇斌, 秦伟, 任小广. 视频目标跟踪算法综述[J]. 计算机科学与探索, 2022, 16(7): 1504-1515. |
[9] | 赵小明, 杨轶娇, 张石清. 面向深度学习的多模态情感识别研究进展[J]. 计算机科学与探索, 2022, 16(7): 1479-1503. |
[10] | 夏鸿斌, 肖奕飞, 刘渊. 融合自注意力机制的长文本生成对抗网络模型[J]. 计算机科学与探索, 2022, 16(7): 1603-1610. |
[11] | 彭豪, 李晓明. 多尺度选择金字塔网络的小样本目标检测算法[J]. 计算机科学与探索, 2022, 16(7): 1649-1660. |
[12] | 孙方伟, 李承阳, 谢永强, 李忠博, 杨才东, 齐锦. 深度学习应用于遮挡目标检测算法综述[J]. 计算机科学与探索, 2022, 16(6): 1243-1259. |
[13] | 刘雅芬, 郑艺峰, 江铃燚, 李国和, 张文杰. 深度半监督学习中伪标签方法综述[J]. 计算机科学与探索, 2022, 16(6): 1279-1290. |
[14] | 赵运基, 范存良, 张新良. 融合多特征和通道感知的目标跟踪算法[J]. 计算机科学与探索, 2022, 16(6): 1417-1428. |
[15] | 程卫月, 张雪琴, 林克正, 李骜. 融合全局与局部特征的深度卷积神经网络算法[J]. 计算机科学与探索, 2022, 16(5): 1146-1154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||