计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (1): 21-40.DOI: 10.3778/j.issn.1673-9418.2105111
收稿日期:
2021-05-28
修回日期:
2021-09-17
出版日期:
2022-01-01
发布日期:
2021-09-24
通讯作者:
+ E-mail: wuzhengyang@m.scnu.edu.cn作者简介:
吴正洋(1980—),男,河北衡水人,博士,高级工程师,硕士生导师,主要研究方向为教育人工智能、教育数据挖掘、协同教育技术等。基金资助:
WU Zhengyang+(), TANG Yong, LIU Hai
Received:
2021-05-28
Revised:
2021-09-17
Online:
2022-01-01
Published:
2021-09-24
About author:
WU Zhengyang, born in 1980, Ph.D., associate professor, M.S. supervisor. His research interests include educational artificial intelligence, educational data mining, collaborative educational technology, etc.Supported by:
摘要:
个性化学习推荐是智能学习的一个研究领域,其目标是在学习平台上给特定学习者提供有效学习资源,从而提升学习积极性与学习效果。虽然现有的推荐方法已被广泛用于教学场景,但教学活动自身的科学规律,使个性化学习推荐在个性化参数设置、推荐目标设定、评价标准设计等方面具有一定的特殊性。针对上述问题,在调研大量文献的基础上对近年来个性化学习推荐的研究进行了综述。从学习推荐通用框架、学习者建模、学习推荐对象建模、学习推荐算法、学习推荐评价五方面对个性化学习推荐的相关研究进行了系统的梳理和解读。首先提出了学习推荐系统的通用框架,其次介绍了学习者建模的思路和方法,接着讨论了学习推荐对象建模的思路和方法,然后归纳了学习推荐的算法与模型,接下来总结了学习推荐评价的设计与方法。并对这五方面现有研究的主要思想、实施方案、优势及不足进行了分析。最后还展望了个性化学习推荐未来的发展方向,为智能学习的进一步深入研究奠定了基础。
中图分类号:
吴正洋, 汤庸, 刘海. 个性化学习推荐研究综述[J]. 计算机科学与探索, 2022, 16(1): 21-40.
WU Zhengyang, TANG Yong, LIU Hai. Survey of Personalized Learning Recommendation[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 21-40.
文献 | 主要方法/技术 | 推荐策略 | 优势/局限 | 适用场景 |
---|---|---|---|---|
[ | CNN | CR,基于描述文本生成的学习资源表示结合学习者偏好预测评分进行推荐 | 文本描述有利于对学习资源建模提供更丰富的特征信息 | 具有文本描述的学习资料推荐 |
[ | Felder-Silverman学习风格量表 | CR,基于满足规则的情况计算学习资源与学习者的相关性分数,再根据分数排序推荐 | 需要人工定义学习资源与学习者学习风格的关联规则 | 学习资料推荐 |
[ | Fuzzy decision tree,CNN | CR,从大量数据中识别出学习资源特征,再根据学习者的理解水平进行推荐 | 学习资源数据描述模型的性能影响推荐的效果 | 学习资料推荐 |
[ | BPR成对排序 | CF,通过捕获学习者对课程两两之间的偏好排序形成课程有序队列 | 由于负课程均值采样空间较大,这些课程可能不是最优 | 课程推荐 |
[ | Weka API的潜在语义分析 | CF,通过关键字注释将学习者与学习资源建立关联 | 使用关键字注释标签对学习者建模,标签本身源自人工设置,可能导致主观偏差 | 学习资料推荐 |
[ | 人工免疫系统(AIS)算法 | HR,根据过往课程学习效果对学习者建模,使用AIS聚类融合基于项目的协同过滤获得备选课程的预测矩阵 | 能够融合多种特征到学习者模型,但对冷启动的缓解效果有限 | 课程推荐 |
[ | 动态本体映射 | HR,采用相似结构层次的本体映射课程属性与学习者属性,根据匹配度进行推荐 | 可整合来自多个来源的信息,以提高效率和用户满意度 | 课程推荐 |
[ | 遗传算法 | HR,整合协同过滤推荐和基于内容推荐,并用遗传算法配置推荐系统的最优参数 | 可整合学习者与课程的多种标准,并得到最优配置结果 | 课程推荐 |
[ | 序列模式挖掘 | HR,基于显式特征的学习者模型进行聚类,通过序列模式挖掘完成学习资源的排序及推荐 | 有利于解决信息过载和缺乏多样性的问题 | 课程推荐 |
[ | 深度知识追踪、模拟退火算法 | HR,基于知识追踪模型预测学习者答题的准确度生成备选题集,再采用模拟退火算法从候选题集中抽取多样性练习题组成推荐列表 | 以学习者答题准确度为目标,并考虑所推荐练习题的多样性和新颖度 | 练习题推荐 |
[ | 多目标粒子群优化算法 | HR,以学习者规划的时间为约束,以同时满足学习者偏好和学习资源难度最适宜为优化目标进行学习资源推荐 | 考虑在给定时间规划内的多目标推荐问题 | 学习资料推荐 |
[ | 自注意力机制 | SR,将学习者在当前会话中所查看主题的历史记录作为输入序列,计算候选线程得分进行推荐 | 能够在没有太多特征属性情况下捕获学习者当前的选择状态 | 课程讨论线程推荐 |
[ | 认知诊断模型、PMF | SR,根据答题会话序列形成的认知诊断模型对学习者建模,再采用PMF预测学生的答题情况,最后根据预测结果进行练习题推荐 | 动态捕获学习者的知识掌握状态 | 练习题推荐 |
[ | 深度知识追踪、遗传算法 | SR,基于学习者练习答题会话序列预测学习者知识掌握水平,再通过遗传算法设置试卷各项质量指标,生成推荐试卷 | 同时动态捕获多个学习者的知识掌握状态 | 试卷推荐 |
[ | 本体 | KR,使用本体分别对学习者、领域知识和学习行为进行建模 | 未给出具体实现过程 | MOOC课程推荐 |
[ | 本体 | KR,基于本体描述所学知识点和学习目标相关性的学习资源推荐方法 | 本体中领域知识和推荐规则制定不能避免人工偏差 | 学习资料推荐 |
[ | 本体推理和神经网络 | KR,基于本体模型对学习者和学习资源进行水平层级分类,根据评估反馈向学习者推荐相应水平层级资源 | 能够根据学习者的水平状态动态调节推荐内容 | 课程知识概念相应资源的推荐 |
[ | 本体 | KR,通过半自动化方法构建了E-learning行为的标准本体。基于本体规则进行推荐 | 能够融合多种个性化参数的学习者模型 | 课程知识概念和主题的推荐 |
[ | 本体、语义相似度 | KR,对学习资源进行分类并基于本体生成语义表示。根据学习资源与学习者目标的语义相似度实现推荐 | 无法确保所推荐知识概念的先后顺序相关性 | 学习中的相关词汇推荐 |
[ | 知识图谱 | KR,基于学习过程中出现的知识单元相关要素构建知识图谱,从而形成多个学习路径,然后根据学习者的学习日志判断其学习进度,再向其推荐学习路径 | 学习路径的配置既符合规律又具有灵活性 | 学习路径推荐 |
[ | 知识图谱 | KR,构建了一个以学习目标为导向的跨学习领域知识图谱,其中包括了六种语义关系,然后结合学习者 的学习目标和学习资源的特征表示推荐学习路径 | 可扩展、可重用 | 跨领域学习路径推荐 |
表1 个性化学习推荐方法摘要及对比
Table 1 Summary and comparison of personalized learning recommendation methods
文献 | 主要方法/技术 | 推荐策略 | 优势/局限 | 适用场景 |
---|---|---|---|---|
[ | CNN | CR,基于描述文本生成的学习资源表示结合学习者偏好预测评分进行推荐 | 文本描述有利于对学习资源建模提供更丰富的特征信息 | 具有文本描述的学习资料推荐 |
[ | Felder-Silverman学习风格量表 | CR,基于满足规则的情况计算学习资源与学习者的相关性分数,再根据分数排序推荐 | 需要人工定义学习资源与学习者学习风格的关联规则 | 学习资料推荐 |
[ | Fuzzy decision tree,CNN | CR,从大量数据中识别出学习资源特征,再根据学习者的理解水平进行推荐 | 学习资源数据描述模型的性能影响推荐的效果 | 学习资料推荐 |
[ | BPR成对排序 | CF,通过捕获学习者对课程两两之间的偏好排序形成课程有序队列 | 由于负课程均值采样空间较大,这些课程可能不是最优 | 课程推荐 |
[ | Weka API的潜在语义分析 | CF,通过关键字注释将学习者与学习资源建立关联 | 使用关键字注释标签对学习者建模,标签本身源自人工设置,可能导致主观偏差 | 学习资料推荐 |
[ | 人工免疫系统(AIS)算法 | HR,根据过往课程学习效果对学习者建模,使用AIS聚类融合基于项目的协同过滤获得备选课程的预测矩阵 | 能够融合多种特征到学习者模型,但对冷启动的缓解效果有限 | 课程推荐 |
[ | 动态本体映射 | HR,采用相似结构层次的本体映射课程属性与学习者属性,根据匹配度进行推荐 | 可整合来自多个来源的信息,以提高效率和用户满意度 | 课程推荐 |
[ | 遗传算法 | HR,整合协同过滤推荐和基于内容推荐,并用遗传算法配置推荐系统的最优参数 | 可整合学习者与课程的多种标准,并得到最优配置结果 | 课程推荐 |
[ | 序列模式挖掘 | HR,基于显式特征的学习者模型进行聚类,通过序列模式挖掘完成学习资源的排序及推荐 | 有利于解决信息过载和缺乏多样性的问题 | 课程推荐 |
[ | 深度知识追踪、模拟退火算法 | HR,基于知识追踪模型预测学习者答题的准确度生成备选题集,再采用模拟退火算法从候选题集中抽取多样性练习题组成推荐列表 | 以学习者答题准确度为目标,并考虑所推荐练习题的多样性和新颖度 | 练习题推荐 |
[ | 多目标粒子群优化算法 | HR,以学习者规划的时间为约束,以同时满足学习者偏好和学习资源难度最适宜为优化目标进行学习资源推荐 | 考虑在给定时间规划内的多目标推荐问题 | 学习资料推荐 |
[ | 自注意力机制 | SR,将学习者在当前会话中所查看主题的历史记录作为输入序列,计算候选线程得分进行推荐 | 能够在没有太多特征属性情况下捕获学习者当前的选择状态 | 课程讨论线程推荐 |
[ | 认知诊断模型、PMF | SR,根据答题会话序列形成的认知诊断模型对学习者建模,再采用PMF预测学生的答题情况,最后根据预测结果进行练习题推荐 | 动态捕获学习者的知识掌握状态 | 练习题推荐 |
[ | 深度知识追踪、遗传算法 | SR,基于学习者练习答题会话序列预测学习者知识掌握水平,再通过遗传算法设置试卷各项质量指标,生成推荐试卷 | 同时动态捕获多个学习者的知识掌握状态 | 试卷推荐 |
[ | 本体 | KR,使用本体分别对学习者、领域知识和学习行为进行建模 | 未给出具体实现过程 | MOOC课程推荐 |
[ | 本体 | KR,基于本体描述所学知识点和学习目标相关性的学习资源推荐方法 | 本体中领域知识和推荐规则制定不能避免人工偏差 | 学习资料推荐 |
[ | 本体推理和神经网络 | KR,基于本体模型对学习者和学习资源进行水平层级分类,根据评估反馈向学习者推荐相应水平层级资源 | 能够根据学习者的水平状态动态调节推荐内容 | 课程知识概念相应资源的推荐 |
[ | 本体 | KR,通过半自动化方法构建了E-learning行为的标准本体。基于本体规则进行推荐 | 能够融合多种个性化参数的学习者模型 | 课程知识概念和主题的推荐 |
[ | 本体、语义相似度 | KR,对学习资源进行分类并基于本体生成语义表示。根据学习资源与学习者目标的语义相似度实现推荐 | 无法确保所推荐知识概念的先后顺序相关性 | 学习中的相关词汇推荐 |
[ | 知识图谱 | KR,基于学习过程中出现的知识单元相关要素构建知识图谱,从而形成多个学习路径,然后根据学习者的学习日志判断其学习进度,再向其推荐学习路径 | 学习路径的配置既符合规律又具有灵活性 | 学习路径推荐 |
[ | 知识图谱 | KR,构建了一个以学习目标为导向的跨学习领域知识图谱,其中包括了六种语义关系,然后结合学习者 的学习目标和学习资源的特征表示推荐学习路径 | 可扩展、可重用 | 跨领域学习路径推荐 |
[1] | 何克抗. 21世纪以来的新兴信息技术对教育深化改革的重大影响[J]. 电化教育研究, 2019, 40(3):5-12. |
HE K K. Significant influence of emerging information technology on deepening reformation of education in the 21st century[J]. E-education Research, 2019, 40(3):5-12. | |
[2] | 祝智庭, 魏非. 教育信息化2.0: 智能教育启程, 智慧教育领航[J]. 电化教育研究, 2018, 39(9):5-16. |
ZHU Z T, WEI F. Educational informatization 2.0: starting on a journey of intelligence education guided by smart education[J]. E-education Research, 2018, 39(9):5-16. | |
[3] |
KLASNJA-MILICEVIC A, IVANOVI M, NANOPOULOS A. Recommender systems in e-learning environments: a survey of the state-of-the-art and possible extensions[J]. Artificial Intelligence Review, 2015, 44(4):571-604.
DOI URL |
[4] |
GUO Q, MING Z. Implement web learning environment based on data mining[J]. Knowledge-Based Systems, 2009, 22(6):439-442.
DOI URL |
[5] | YA T, MCCALLA G. Smart recommendation for an evolving e-learning system: architecture and experiment[J]. International Journal on E-Learning, 2003, 4(1):105-129. |
[6] |
GEORGE G, LAL A M. Review of ontology-based recommender systems in e-learning[J]. Computers Education, 2019, 142(12):103642.
DOI URL |
[7] |
NABIZADEH A H, LEAL J P, RAFSANJANI H N, et al. Learning path personalization and recommendation methods: a survey of the state-of-the-art[J]. Expert Systems with Applications, 2020, 159:113596.
DOI URL |
[8] |
KLASNJA-MILICEVIC A, VESIN B, IVANOVIC M, et al. E-learning personalization based on hybrid recommendation strategy and learning style identification[J]. Computers Education, 2011, 56(3):885-899.
DOI URL |
[9] | KARAMPIPERIS P, SAMPSON D G. Adaptive learning resources sequencing in educational hypermedia systems[J]. International Journal of Education and Social Science, 2005, 8(4):128-147. |
[10] | DENG Y L, HUANG D J, CHUNG C J. ThoTh Lab: a personalized learning framework for CS hands-on projects (abstract only)[C]// Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science Education, Seattle, Mar 8-11, 2017. New York: ACM, 2017: 706. |
[11] | 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7):1619-1647. |
HUANG L W, JIANG B T, LV S Y, et al. Survey on deep learning based recommender systems[J]. Chinese Journal of Computers, 2018, 41(7):1619-1647. | |
[12] | GEDEN M, EMERSON A, ROWE J P, et al. Predictive student modeling in educational games with multi-task learning[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 654-661. |
[13] |
CHRYSAFIADI K, VIRVOU M. Student modeling approaches: a literature review for the last decade[J]. Expert Systems with Applications, 2013, 40(11):4715-4729.
DOI URL |
[14] |
ESSALMI F, AYED L J B, JEMNI M, et al. Generalized metrics for the analysis of e-learning personalization strategies[J]. Computers in Human Behavior, 2015, 48:310-322.
DOI URL |
[15] |
SHI D Q, WANG T, XING H, et al. A learning path recommendation model based on a multidimensional knowledge graph framework for e-learning[J]. Knowledge-Based Systems, 2020, 195:105618.
DOI URL |
[16] |
DA SILVEIRA DIAS A, WIVES L K. Recommender system for learning objects based in the fusion of social signals, interests, and preferences of learner users in ubiquitous e-learning systems[J]. Personal and Ubiquitous Computing, 2019, 23(2):249-268.
DOI URL |
[17] | ABEL F. Contextualization, user modeling and personalization in the social web: from social tagging via context to cross-system user modeling and personalization[J]. Hanover: Leibniz University of Hanover, 2011. |
[18] | OLIVEIRA A, TEIXEIRA M M, NETO C. Recommendation of educational content to improve student performance: an approach based on learning styles[C]// Proceedings of the 12th International Conference on Computer Supported Education, Prague, May 2-4, 2020: 359-365. |
[19] | 伍鑫, 黄勃, 方志军, 等. 序列生成对抗网络在推荐系统中的应用[J]. 计算机工程与应用, 2020, 56(23):175-179. |
WU X, HUANG B, FANG Z J, et al. Application of sequence generative adversarial network in recommendation system[J]. Computer Engineering and Applications, 2020, 56(23):175-179. | |
[20] | 应文杰, 桑基韬. 改进的哈希学习高效推荐算法[J]. 计算机工程与应用, 2020, 56(9):75-83. |
YING W J, SANG J T. Improved Hashing for efficient recommendation method[J]. Computer Engineering and Applications, 2020, 56(9):75-83. | |
[21] | LEE D D, SEUNG H S. Algorithms for non-negative matrix factorization[C]// Proceedings of the Advances in Neural Information Processing Systems, Denver, 2000. Cambridge: MIT Press, 2000: 556-562. |
[22] | ZHANG S, WANG W H, FORD J, et al. Learning from incomplete ratings using non-negative matrix factorization[C]// Proceedings of the 6th SIAM International Conference on Data Mining, Bethesda, Apr 20-22, 2006. Philadelphia: SIAM, 2006: 549-553. |
[23] | LEE D D, SEUNG H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(10):789-791. |
[24] | GILLANI N, EYNON R, OSBORNE M, et al. Communication communities in moocs[J]. arXiv:1403.4640v2, 2014. |
[25] | LI J G, CHANG C, YANG Z X, et al. Probability matrix factorization algorithm for course recommendation system fusing the influence of nearest neighbor users based on cloud model[C]// LNCS 11354: Proceedings of the 4th International Conference of Human Centered Computing, Mérida, Dec 5-7, 2018. Cham: Springer, 2018: 488-496. |
[26] | GUO T H, WEN Y P, WANG F R, et al. Learning resource recommendation based on generalized matrix factorization and long short-term memory model[C]// Proceedings of the 2019 IEEE International Conference on Cloud Computing Technology and Science, Sydney, Dec 11-13, 2019. Piscataway: IEEE, 2019: 217-222. |
[27] | DOERSCH C. Tutorial on variational autoencoders[J]. arXiv:1606.05908, 2016. |
[28] | WANG H, WANG N Y, YEUNG D Y. Collaborative deep learning for recommender systems[C]// Proceedings of the 21st ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, Sydney, Aug 10-13, 2015. New York: ACM, 2015: 1235-1244. |
[29] | ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 353-362. |
[30] | LI X P, SHE J. Collaborative variational autoencoder for recommender systems[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 305-314. |
[31] |
GONG T, YAO X. Deep exercise recommendation model[J]. International Journal of Modeling and Optimization, 2019, 9(1):18-23.
DOI URL |
[32] | VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]// Proceedings of the 25th International Conference on Machine Learning, Helsinki, Jun 5-9, 2008. New York: ACM, 2008: 1096-1103. |
[33] |
ZHOU P, ZHOU Y X, WU D P, et al. Differentially private online learning for cloud-based video recommendation with multimedia big data in social networks[J]. IEEE Transactions on Multimedia, 2016, 18(6):1217-1229.
DOI URL |
[34] | CHEUNG M, SHE J. Bag-of-features tagging approach for a better recommendation with social big data[C]// Proceedings of the 4th International Conference on Advances in Information Mining and Management, Paris, Jul 20-24, 2014: 83-88. |
[35] | HUO Y J, XIAO J, NI L M. Towards personalized learning through class contextual factors-based exercise recommendation[C]// Proceedings of the 24th IEEE International Conference on Parallel and Distributed Systems, Singapore, Dec 11-13, 2018. Piscataway: IEEE, 2018: 85-92. |
[36] | HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[C]// Proceedings of the 4th International Conference on Learning Representations, San Juan, May 2-4, 2016: 1-10. |
[37] | ZHANG Y X, ZHAO P Y, GUAN Y S, et al. Preference-aware mask for session-based recommendation with bidirectional transformer[C]// Proceedings of the 2020 IEEE International Conference on Acoustics, Speech and Signal Processing, Barcelona, May 4-8, 2020. Piscataway: IEEE, 2020: 3412-3416. |
[38] |
WU Z, HE T, MAO C, et al. Exam paper generation based on performance prediction of student group[J]. Information Sciences, 2020, 532(9):72-90.
DOI URL |
[39] | ZHANG M, LIU S X, WANG Y F. STR-SA: session-based thread recommendation for online course forum with self-attention[C]// Proceedings of the 2020 IEEE Global Engineering Education Conference, Porto, Apr 27-30, 2020. Piscataway: IEEE, 2020: 374-381. |
[40] | ANJORIN M, RODENHAUSEN T, GARCÍA R D, et al. Exploiting semantic information for graph-based recommendations of learning resources[C]// LNCS 7563: Proceedings of the 7th European Conference of Technology Enhanced Learning, Saarbrücken, Sep 18-21, 2012. Berlin, Heidelberg: Springer, 2012: 9-22. |
[41] | LV P, WANG X X, XU J, et al. Utilizing knowledge graph and student testing behavior data for personalized exercise recommendation[C]// Proceedings of the ACM Turing Celebration Conference, Shanghai, May 19-20, 2018. New York: ACM, 2018: 53-59. |
[42] |
WU Z Y, LI M, TANG Y, et al. Exercise recommendation based on knowledge concept prediction[J]. Knowledge-Based Systems, 2020, 210:106481.
DOI URL |
[43] | ALYAHYA M, GEORGE R, ALFARIES A. Ontologies in e-learning: review of the literature[J]. International Journal of Software Engineering and Its Applications, 2015, 9(2):67-84. |
[44] |
STANCIN K, POSCIC P, JAKSIC D. Ontologies in education- state of the art[J]. Education and Information Technologies, 2020, 25(6):5301-5320.
DOI URL |
[45] | PUKKHEM N. LORecommendNet: an ontology-based representation of learning object recommendation[C]// Proceedings of the 10th International Conference on Computing and Information Technology, Angsana Laguna, May 8-9, 2014. Cham: Springer, 2014: 293-303. |
[46] | HARRATHI M, TOUZANI N, BRAHAM R. A hybrid knowlegde-based approach for recommending massive learning activities[C]// Proceedings of the 14th IEEE/ACS International Conference on Computer Systems and Applications, Hammamet, Oct 30-Nov 3, 2017. Washington: IEEE Computer Society, 2017: 49-54. |
[47] |
PEREIRA C K, CAMPOS F, STRÖELE V, et al. BROAD-RSI: educational recommender system using social networks interactions and linked data[J]. Journal of Internet Services and Applications, 2018, 9(1):7.
DOI URL |
[48] | GRIVOKOSTOPOULOU F, PERIKOS I, PARASKEVAS M, et al. An ontology-based approach for user modelling and personalization in e-learning systems[C]// Proceedings of the 18th IEEE/ACIS International Conference on Computer and Information Science, Beijing, Jun 17-19, 2019. Piscataway: IEEE, 2019: 1-6. |
[49] | NGAFEESON M N, GAUTAM Y. Learning management system adoption: a theory of planned behavior approach[J]. International Journal of Web-Based Learning and Teaching Technologies, 2019, 15(3):27-42. |
[50] | RAHMAN S A, AHMAD N R, AHMAD M, et al. A design of a personalized educational resources management system[C]// Proceedings of the 2015 IEEE 7th International Conference on Engineering Education, Kanazawa, Nov 17-18, 2015. Piscataway: IEEE, 2015: 140-144. |
[51] | LIMONGELLI C, LOMBARDI M, MARANI A, et al. Enhancing categorization of learning resources in the dataset of joint educational entities[C]// Proceedings of the ISWC 2017 Posters & Demonstrations and Industry Tracks co-located with 16th International Semantic Web Conference, Vienna, Oct 23-25, 2017: 1-4. |
[52] | IVANOVA T. Resources and semantic-based knowledge models for personalized and self-regulated learning in the web: survey and trends[C]// Proceedings of the 20th International Conference on Computer Systems and Technologies, Ruse, Jun 21-22, 2019. New York: ACM, 2019: 316-323. |
[53] |
SHU J B, SHEN X X, LIU H, et al. A content-based recommendation algorithm for learning resources[J]. Multimedia Systems, 2018, 24(2):163-173.
DOI URL |
[54] |
CHEN Y, TSENG C, HUANG C, et al. Recommendation system based on rule-space model of two-phase blue-red tree and optimized learning path with multimedia learning and cognitive assessment evaluation[J]. Multimedia Tools and Applications, 2017, 76(18):18237-18264.
DOI URL |
[55] | LI X, LI X, TANG J T, et al. Improving deep item-based collaborative filtering with Bayesian personalized ranking for MOOC course recommendation[C]// LNCS 12274: Proceedings of the 13th International Conference on Knowledge Science, Engineering and Management, Hangzhou, Aug 28-30, 2020. Cham: Springer, 2020: 247-258. |
[56] | RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[J]. arXiv:1205.2618, 2012. |
[57] |
CIUCIU I, DEMEY Y T. PC med learner: a personalised and collaborative e-learning materials recommendation system using an ontology based data matching strategy[J]. International Journal of Knowledge and Learning, 2014, 9(3):194-218.
DOI URL |
[58] |
SPYNS P, TANG Y, MEERSMAN R. An ontology engineering methodology for DOGMA[J]. Applied Ontology, 2008, 3(1/2):13-39.
DOI URL |
[59] | PAZZANI M J, BILLSUS D. Content-based recommendation systems[M]// BRUSILOVSKY P, KOBSA A, NEJDL W, eds. LNCS 4321: The Adaptive Web: Methods and Strategies of Web Personalization. Berlin, Heidelberg: Springer, 2007. |
[60] |
CHATTI M A, DAKOVA S, THÜS H, et al. Tag-based collaborative filtering recommendation in personal learning environments[J]. IEEE Transactions on Learning Technologies, 2013, 6(4):337-349.
DOI URL |
[61] |
CHANG P, LIN C, CHEN M. A hybrid course recommendation system by integrating collaborative filtering and artificial immune systems[J]. Algorithms, 2016, 9(3):47.
DOI URL |
[62] | RAJ N S, RENUMOL V G. A rule-based approach for adaptive content recommendation in a personalized learning environment: an experimental analysis[C]// Proceedings of the 10th IEEE International Conference on Technology for Education, Goa, Dec 9-11, 2019. Piscataway: IEEE, 2019: 138-141. |
[63] |
ROSEWELT L A, RENJIT J A. A content recommendation system for effective e-learning using embedded feature selection and fuzzy DT based CNN[J]. Journal of Intelligent Fuzzy Systems, 2020, 39(1):795-808.
DOI URL |
[64] | WEN H L, DING G G, LIU C, et al. Matrix factorization meets cosine similarity: addressing sparsity problem in collaborative filtering recommender system[C]// LNCS 8709: Proceedings of the 16th Asia-Pacific Web Conference, Changsha, Sep 5-7, 2014. Cham: Springer, 2014: 306-317. |
[65] |
BAG S, KUMAR S K, TIWARI M K. An efficient recommendation generation using relevant Jaccard similarity[J]. Information Science, 2019, 483(5):53-64.
DOI URL |
[66] | PHUEAKNUMPOL V, BUDSABONG Z, KERDPRASOP K, et al. Product recommendation system by approximate search based on Manhattan distance measurement[C]// Proceedings of the 11th WSEAS International Conference on Systems Science and Computational Intelligence, Singapore, May 11-13, 2012: 153-158. |
[67] |
IBRAHIM M E, YANG Y Y, NDZI D L, et al. Ontology-based personalized course recommendation framework[J]. IEEE Access, 2019, 7:5180-5199.
DOI URL |
[68] |
ESTEBAN A, ZAFRA A, ROMERO C. Helping university students to choose elective courses by using a hybrid multi-criteria recommendation system with genetic optimization[J]. Knowledge-Based Systems, 2020, 194(12):105385.
DOI URL |
[69] |
WAN S S, NIU Z D. A hybrid e-learning recommendation approach based on learners’ influence propagation[J]. IEEE Transactions on Knowledge and Data Engineering, 2020, 32(5):827-840.
DOI URL |
[70] | 李浩君, 杨琳, 张鹏威. 基于多目标优化策略的在线学习资源推荐方法[J]. 模式识别与人工智能, 2019, 32(4):306-316. |
LI H J, YANG L, ZHANG P W. Method of online learning resource recommendation based on multi-objective optimization strategy[J]. Pattern Recognition and Artificial Intelligence, 2019, 32(4):306-316. | |
[71] |
TARUS J K, NIU Z D, MUSTAFA G. Knowledge-based recommendation: a review of ontology-based recommender systems for e-learning[J]. Artificial Intelligence Review, 2018, 50(1):21-48.
DOI URL |
[72] |
COLOMBO-MENDOZA L O, VALENCIA-GARCÍA R, GONZÁLEZ A R, et al. RecomMetz: a context-aware knowledge-based mobile recommender system for movie showtimes[J]. Expert System Application, 2015, 42(3):1202-1222.
DOI URL |
[73] |
SARWAR S, UL-QAYYUM Z, GARCÍA-CASTRO R, et al. Ontology based e-learning framework: a personalized, adaptive and context aware model[J]. Multimedia Tools and Applications, 2019, 78(24):34745-34771.
DOI URL |
[74] |
FRAIHAT S, SHAMBOUR Q. A framework of semantic recommender systems for e-learning[J]. Journal of Software, 2015, 10(3):317-330.
DOI URL |
[75] |
ZHU H P, TIAN F, WU K, et al. A multi-constraint learning path recommendation algorithm based on knowledge map[J]. Knowledge-Based Systems, 2018, 143(12):102-114.
DOI URL |
[76] |
DURAND G, BELACEL N, LAPLANTE F. Graph theory based model for learning path recommendation[J]. Information Science, 2013, 251(4):10-21.
DOI URL |
[77] | WANG S J, CAO L B, WANG Y. A survey on session-based recommender systems[J]. arXiv:1902.04864, 2019. |
[78] | 朱天宇, 黄振亚, 陈恩红, 等. 基于认知诊断的个性化试题推荐方法[J]. 计算机学报, 2017, 40(1):176-191. |
ZHU T Y, HUANG Z Y, CHEN E H, et al. Cognitive diagnosis based personalized question recommendation[J]. Chinese Journal of Computers, 2017, 40(1):176-191. | |
[79] | PIECH C, BASSEN J, HUANG J, et al. Deep knowledge tracing[C]// Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 505-513. |
[80] |
ZHANG H, HUANG T, LV Z H, et al. MCRS: a course recommendation system for moocs[J]. Multimedia Tools and Applications, 2018, 77(6):7051-7069.
DOI URL |
[81] | YU X, REN X, GU Q Q, et al. Collaborative filtering with entity similarity regularization in heterogeneous information networks[C]// Proceedings of the 2013 International Joint Conference Artificial Intelligence Workshop of Heterogeneous Information Networks, Beijing, Aug 3-9, 2013. Menlo Park: AAAI, 2013: 1-6. |
[82] | LU Y F, FANG Y, SHI C. Meta-learning on heterogeneous information networks for cold-start recommendation[C]// Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Aug 23-27, 2020. New York: ACM, 2020: 1563-1573. |
[83] |
GUPTA M, KUMAR P. Recommendation generation using personalized weight of meta-paths in heterogeneous information networks[J]. European Journal of Operational Research, 2020, 284(2):660-674.
DOI URL |
[84] | 叶俊民, 黄朋威, 罗达雄, 等. 一种基于HIN 的学习资源推荐算法研究[J]. 小型微型计算机系统, 2019, 40(4):726-732. |
YE J M, HUANG P W, LUO D X, et al. Study on the recommendation algorithm of learning resources based on HIN[J]. Journal of Chinese Computer Systems, 2019, 40(4):726-732. | |
[85] | IDRISSI N, ZELLOU A, HOURRANE O, et al. Addressing cold start challenges in recommender systems: towards a new hybrid approach[C]// Proceedings of the 2019 International Conference on Smart Applications, Communications and Networking, Sharm El Sheik, Dec 17-19, 2019. Piscataway: IEEE, 2019: 1-6. |
[86] | RAMA K, KUMAR P, BHASKER B. Deep learning to address candidate generation and cold start challenges in recommender systems: a research survey[J]. arXiv: 1907.08674, 2019. |
[87] | ZHAO J J, BHATT S P, THILLE C, et al. Cold start know-ledge tracing with attentive neural turing machine[C]// Proceedings of the 7th ACM Conference on Learning @Scale, Virtual Even, Aug 12-14, 2020. New York: ACM, 2020: 333-336. |
[88] |
ZHANG Q, WU D S, LU J, et al. A cross-domain recommender system with consistent information transfer[J]. Decision Support Systems, 2017, 104(12):49-63.
DOI URL |
[89] | DAHDOUH K, OUGHDIR L, DAKKAK A, et al. Smart courses recommender system for online learning platform[C]// Proceedings of the 5th IEEE International Congress on Information Science and Technology, Marrakech, Oct 21-27, 2018. Piscataway: IEEE, 2018: 328-333. |
[90] | IKRAM M S, PILLAY A W, JEMBERE E. Using social networks to enhance a deep learning approach to solve the cold-start problem in recommender systems[C]// Proceedings of the South African Forum for Artificial Intelligence Research, 2020: 173-184. |
[91] | BITONTO P D, ROSELLI T, ROSSANO V. Recommendation in e-learning social networks[C]// LNCS 7048: Proceedings of the 10th International Conference of Advances in Web-Based Learning, Hong Kong, China, Dec 8-10, 2011. Berlin, Heidelberg: Springer, 2011: 327-332. |
[92] |
ERDT M, FERNÁNDEZ A, RENSING C. Evaluating recommender systems for technology enhanced learning: a quantitative survey[J]. IEEE Transactions on Learning Technologies, 2015, 8(4):326-344.
DOI URL |
[93] |
SALEHI M, KAMALABADI I N, GHOUSHCHI M B G. An effective recommendation framework for personal learning environments using a learner preference tree and a GA[J]. IEEE Transactions on Learning Technologies, 2013, 6(4):350-363.
DOI URL |
[94] | BULATHWELA S, PÉREZ-ORTIZ M, YILMAZ E, et al. Truelearn: a family of Bayesian algorithms to match lifelong learners to open educational resources[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligenc, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 565-573. |
[95] | MANOUSELIS N, VUORIKARI R, ASSCHE F V. Collaborative recommendation of e-learning resources: an experimental investigation[J]. Journal of Computer Assisted Lear-ning, 2010, 26(4):227-242. |
[96] | PULIDO J A G, CORTÉS-TORO E, DURÁN-DOMÍNGUEZ A, et al. Novel and classic metaheuristics for tunning a recommender system for predicting student performance in online campus[C]// LNCS 11314: Proceedings of the 19th International Intelligent Data Engineering and Automated Learning Conference, Madrid, Nov 21-23, 2018. Cham: Springer, 2018: 125-133. |
[97] |
HUO Y J, WONG D F, NI L M, et al. Knowledge modeling via contextualized representations for LSTM-based personalized exercise recommendation[J]. Information Science, 2020, 523:266-278.
DOI URL |
[98] |
KOTKOV D, WANG S Q, VEIJALAINEN J. A survey of serendipity in recommender systems[J]. Knowledge-Based Systems, 2016, 111:180-192.
DOI URL |
[99] |
AFRIDI A H, YASAR A, SHAKSHUKI E M. Facilitating research through serendipity of recommendations[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(6):2263-2275.
DOI URL |
[100] | KOTKOV D, VEIJALAINEN J, WANG S Q. Challenges of serendipity in recommender systems[C]// Proceedings of the 12th International Conference on Web Information Systems and Technologies, Rome, Apr 23-25, 2016: 251-256. |
[101] | KOTKOV D, KONSTAN J A, ZHAO Q, et al. Investigating serendipity in recommender systems based on real user feedback[C]// Proceedings of the 33rd Annual ACM Symposium on Applied Computing, Pau, Apr 9-13, 2018. New York: ACM, 2018: 1341-1350. |
[102] | KAPOOR K, KUMAR V, TERVEEN L G, et al. “I like to explore sometimes”: adapting to dynamic user novelty preferences[C]// Proceedings of the 9th ACM Conference on Recommender Systems, Vienna, Sep 16-20, 2015. New York: ACM, 2015: 19-26. |
[103] | SIE R L L, VAN ENGELEN B J, BITTER-RIJPKEMA M, et al. COCOON CORE: co-author recommendations based on betweenness centrality and interest similarity[M]// MANOUSELIS N, DRACHSLER H, VERBERT K, eds. Recommender Systems for Technology Enhanced Learning. Cham: Springer, 2014: 267-282. |
[104] | TANG T Y, WINOTO P, MCCALLA G. Further thoughts on context aware paper recommendations for education[M]// MANOUSELIS N, DRACHSLER H, VERBERT K, eds. Recommender Systems for Technology Enhanced Learning. Cham: Springer, 2014: 159-173. |
[105] | MICHLÍK P, BIELIKOVÁ M. Exercises recommending for limited time learning[C]// Proceedings of the 1st Workshop on Recommender Systems for Technology Enhanced Learning, Barcelona, Sep 29-30, 2010. New York: Elsevier Science Inc., 2010: 2821-2828. |
[106] |
WANG P Y, YANG H C. Using collaborative filtering to support college students’ use of online forum for English learning[J]. Computer & Education, 2012, 59(2):628-637.
DOI URL |
[107] | LINDSTAEDT S N, BEHAM G, KUMP B, et al. Getting to know your user-unobtrusive user model maintenance within work-integrated learning environments[C]// LNCS 5794: Proceedings of the 4th European Conference on Technology Enhanced Learning, Learning in the Synergy of Multiple Disciplines, Nice, Sep 29-Oct 2, 2009. Berlin, Heidelberg: Springer, 2009: 73-87. |
[108] |
SANTOS O C, BOTICARIO J, PÉREZ-MARÍN D . Extending web-based educational systems with personalised support through user centred designed recommendations along the e-learning life cycle[J]. Science of Computer Programming, 2014, 88:92-109.
DOI URL |
[109] | RAMOS V F C, BRA P D, XEXÉO G. Qualitative and quantitative evaluation of an adaptive course in GALE[C]// LNCS 8095: Proceedings of the 8th European Conference on Technology Enhanced Learning, Paphos, Sep 17-21, 2013. Berlin, Heidelberg: Springer, 2013: 301-313. |
[110] | VASILYEVA E, BRA P D, PECHENIZKIY M. Immediate elaborated feedback personalization in online assessment[C]// LNCS 5192: Proceedings of the 3rd European Conference on Technology Enhanced Learning, Maastricht, Sep 16-19, 2008. Berlin, Heidelberg: Springer, 2008: 449-460. |
[111] | LEY T, KUMP B. Which user interactions predict levels of expertise in work-integrated learning?[C]// LNCS 8095: Proceedings of the 8th European Conference on Technology Enhanced Learning, Paphos, Sep 17-21, 2013. Berlin, Heidelberg: Springer, 2013: 178-190. |
[112] | ARYAL S, PORAWAGAMA A S, HASITH M G S H, et al. MoocRec: learning styles-oriented MOOC recommender and search engine[C]// Proceedings of the 2019 IEEE Global Engineering Education Conference, Dubai, Apr 8-11, 2019. Piscataway: IEEE, 2019: 1167-1172. |
[1] | 于慧琳, 陈炜, 王琪, 高建伟, 万怀宇. 使用子图推理实现知识图谱关系预测[J]. 计算机科学与探索, 2022, 16(8): 1800-1808. |
[2] | 曾凡智, 许露倩, 周燕, 周月霞, 廖俊玮. 面向智慧教育的知识追踪模型研究综述[J]. 计算机科学与探索, 2022, 16(8): 1742-1763. |
[3] | 王雪纯, 吕晟凯, 吴浩, 何鹏, 曾诚. 多网络混合嵌入学习的服务推荐方法研究[J]. 计算机科学与探索, 2022, 16(7): 1529-1542. |
[4] | 王宝亮, 潘文采. 基于知识图谱的双端邻居信息融合推荐算法[J]. 计算机科学与探索, 2022, 16(6): 1354-1361. |
[5] | 张雁操, 赵宇海, 史岚. 融合图注意力的多特征链接预测算法[J]. 计算机科学与探索, 2022, 16(5): 1096-1106. |
[6] | 许嘉, 韦婷婷, 于戈, 黄欣悦, 吕品. 题目难度评估方法研究综述[J]. 计算机科学与探索, 2022, 16(4): 734-759. |
[7] | 袁立宁, 李欣, 王晓冬, 刘钊. 图嵌入模型综述[J]. 计算机科学与探索, 2022, 16(1): 59-87. |
[8] | 蒋光峰, 胡鹏程, 叶桦, 仰燕兰. 基于重构误差的同构图分类模型[J]. 计算机科学与探索, 2022, 16(1): 185-193. |
[9] | 王晓东, 赵一宁, 肖海力, 王小宁, 迟学斌. 使用GNN与RNN实现用户行为分析[J]. 计算机科学与探索, 2021, 15(5): 838-847. |
[10] | 李鹏辉, 翟正利, 冯舒. 图对抗防御研究进展[J]. 计算机科学与探索, 2021, 15(12): 2292-2303. |
[11] | 郭奕,徐亮,熊雪军. 社交网络中意见领袖挖掘方法综述[J]. 计算机科学与探索, 2021, 15(11): 2077-2092. |
[12] | 赵传,张凯涵,梁吉业. 非对称的异质信息网络推荐算法[J]. 计算机科学与探索, 2020, 14(6): 939-946. |
[13] | 周慧,赵中英,李超. 面向异质信息网络的表示学习方法研究综述[J]. 计算机科学与探索, 2019, 13(7): 1081-1093. |
[14] | 陆汝华,张家录,钟嘉鸣. 软决策分析方法及其在智能推荐中的应用[J]. 计算机科学与探索, 2019, 13(3): 529-540. |
[15] | 张光荣,王宝亮,侯永宏. 融合标签的实值条件受限波尔兹曼机推荐算法[J]. 计算机科学与探索, 2019, 13(1): 138-146. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||