[1] YANG Y, WANG H. Multi-view clustering: a survey[J]. Big Data Mining and Analytics, 2018, 1(2): 83-107.
[2] KUMAR A, RAI P, DAUME H. Co-regularized multi-view spectral clustering[C]//Advances in Neural Information Pro-cessing Systems 24, Granada, Dec 12-14, 2011: 1413-1421.
[3] 张炜, 邓赵红, 王士同. 基于核诱导的不完整多视角聚类[J]. 计算机科学与探索, 2021, 15(2): 284-293.
ZHANG W, DENG Z H, WANG S T. Kernel-induced in-complete multi-view clustering[J]. Journal of Frontiers of Com-puter Science and Technology, 2021, 15(2): 284-293.
[4] NIE F P, CAI G H, LI X L. Multi-view clustering and semi-supervised classification with adaptive neighbours[C]//Pro-ceedings of the 31st AAAI Conference on Artificial Intelli-gence, San Francisco, Feb 4-9, 2017. Menlo Park: AAAI, 2017: 2408-2414.
[5] 范瑞东, 侯臣平. 鲁棒自加权的多视图子空间聚类[J]. 计算机科学与探索, 2021, 15(6): 1062-1073.
FAN R D, HOU C P. Robust auto-weighted multiview sub-space clustering[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1062-1073.
[6] NIE F P, LI J, LI X L. Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th Internatio-nal Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 2564-2570.
[7] ZHAN K, ZHANG C, GUAN J, et al. Graph learning for multi-view clustering[J]. IEEE Transactions on Cybernetics, 2017, 48(10): 2887-2895.
[8] CHEN M S, HUANG L, WANG C D, et al. Relaxed multi-view clustering in latent embedding space[J]. Information Fusion, 2021, 68: 8-21.
[9] WANG R, NIE F P, WANG Z, et al. Parameter-free weigh-ted multi-view projected clustering with structured graph learning[J]. IEEE Transactions on Knowledge and Data En-gineering, 2019, 32(10): 2014-2025.
[10] WANG X B, LEI Z, GUO X J, et al. Multi-view subspace clustering with intactness-aware similarity[J]. Pattern Recog-nition, 2019, 88: 50-63.
[11] XIA S, PENG D, MENG D, et al. A fast adaptive k-means with no bounds[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(1): 87-99.
[12] DING Y, ZHAO Y, SHEN X, et al. Yinyang K-means: a drop-in replacement of the classic K-means with consistent speed-up[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 579-587.
[13] MOHAR B, ALAVI Y, CHARTRAND G, et al. The Lapla-cian spectrum of graphs[J]. Graph Theory, Combinatorics and Applications, 1991, 18(7): 871-898.
[14] FAN K. On a theorem of Weyl concerning eigenvalues of linear transformations I[J]. Proceedings of the National Aca-demy of Sciences of the United States of America, 1949, 35(11): 652-655.
[15] VANDENBERGHE L, BOYD S. Convex optimization[M]. Cambridge: Cambridge University Press, 2004: 146-159.
[16] DUCHI J C, SHALEV-SHWARTZ S, SINGER Y, et al. Efficient projections onto the l1-ball for learning in high di-mensions[C]//Proceedings of the 25th International Conference on Machine Learning, Helsinki, Jun 5-9, 2008. New York: ACM, 2008: 272-279.
[17] NIE F P, WANG X Q, HUANG H. Clustering and projected clustering with adaptive neighbors[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowled-ge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 977-986.
[18] KANG Z, SHI G, HUANG S, et al. Multi-graph fusion for multi-view spectral clustering[J]. Knowledge-Based Systems, 2020, 189: 105102.
[19] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9(11): 2579-2605. |