[1] VAPNIK V N. Statistical learning theory[M]. New York: Wiley Press, 1998: 401-421.
[2] KHEMCHANDANI J R, CFANDRA S. Twin support vector machines for pattern classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(5): 905-910.
[3] PENG X J. TSVR: an efficient twin support vector machine for regression[J]. Neural Networks, 2010, 23(3): 365-372.
[4] SHAO Y H, ZHANG C H. An ε-twin support vector machine for regression[J]. Neural Computing and Applications, 2013, 23(1): 175-185.
[5] 丁世飞, 黄华娟. 最小二乘孪生参数化不敏感支持向量回归机[J]. 软件学报, 2017, 28(12): 3146-3155.
DING S F, HUANG H J. Least squares twin parametric insensitive support vector regression[J]. Journal of Software, 2017, 28(12): 3146-3155.
[6] XU Y T, YANG Z J, PAN X L. A novel twin support vector machine with pinball loss[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 28(2): 359-370.
[7] 曹杰, 顾斌杰, 熊伟丽, 等. 增量式约简最小二乘孪生支持向量回归机[J]. 计算机科学与探索, 2021, 15(3): 553-563.
CAO J, GU B J, XIONG W L, et al. Incremental reduced least twin squares support vector regression[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(3): 553-563.
[8] YE Y F, GAO J B, SHAO Y H, et al. Robust support vector regression with generic quadratic nonconvex ε-insensitive loss[J]. Applied Mathematical Modelling, 2020, 82: 235-251.
[9] BALASUNDARAM S, PRASAD S C. Robust twin support vector regression based on Huber loss function[J]. Neural Computing and Applications, 2020, 32: 11285-11309.
[10] GUPTA U, GUPTA D. On regularization based twin support vector regression with Huber loss[J]. Neural Processing Letters, 2021, 53: 459-515.
[11] OLIVIER C. Training a support vector machine in the primal[J]. Neural Computation, 2007, 19(5): 1155-1178.
[12] SINGLA M, GHOSH D, SHUKLA K K, et al. Robust twin support vector regression based on rescaled hinge loss[J]. Pattern Recognition, 2020, 105: 107-395.
[13] TANVEER M, SHARMA A, SUGANTHAN P N. General twin support vector machine with pinball loss function[J]. Information Sciences, 2019, 494: 311-327.
[14] DONG H W, YANG L M. Training robust support vector regression machines for more general noise[J]. Journal of Intelligent & Fuzzy Systems, 2020, 39(3): 2881-2892.
[15] 马梦萍, 杨志霞. 非对称v-无核二次曲面支持向量回归机[J]. 计算机工程与应用, 2021, 57(7): 70-77.
MA M P, YANG Z X. Asymmetric ν-kernel-free quadratic surface support vector regression[J]. Computer Engineering and Applications, 2021, 57(7): 70-77.
[16] PENG X J. Primal twin support vector regression and its sparse approximation[J]. Neurocomputing, 2010, 73: 2846-2858.
[17] CHEN C F, YAN C Q, ZHAO N, et al. A robust algorithm of support vector regression with a trimmed Huber loss function in the primal[J]. Soft Computing, 2017, 21: 5235-5243.
[18] DEMSAR J. Statistical comparisons of classifiers over mul-tiple data sets[J]. Journal of Machine Learning Research, 2006, 7(1): 1-30. |