[1] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述:一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515-548.
FAN C N, LIU P, XIAO T, et al. A review of deep domain adaptation: general situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515-548.
[2] LONG M S, ZHU H, WANG J M, et al. Unsupervised domain adaptation with residual transfer networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 136-144.
[3] TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[J]. arXiv:1412.3474, 2014.
[4] LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on Machine Learning, Lile, Jul 6-11, 2015: 97-105.
[5] LONG M S, ZHU H, WANG J M, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 2208-2217.
[6] YAN H L, DING Y K, LI P H, et al. Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 945-954.
[7] SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4058-4065.
[8] ZHOU G Y, HUANG J X. Modeling and mining domain shared knowledge for sentiment analysis[J]. ACM Transactions on Information Systems, 2017, 36(2): 1-36.
[9] PENG X C, SAENKO K. Synthetic to real adaptation with generative correlation alignment networks[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 1982-1991.
[10] SUN B C, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation[C]//LNCS 9915: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-16, 2016. Cham: Springer, 2016: 443-450.
[11] CHEN C, CHEN Z H, JIANG B Y, et al. Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3296-3303.
[12] LI Y J, SWERSKY K, ZEMEL R S. Generative moment matching networks[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 1718-1727.
[13] ZELLINGER W, GRUBINGER T, LUGHOFER E, et al. Central moment discrepancy (CMD) for domain-invariant representation learning[J]. arXiv:1702.08811, 2017.
[14] ROZANTSEV A, SALZMANN M, FUA P. Beyond sharing weights for deep domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 801-814.
[15] 许夙晖, 慕晓冬, 柴栋, 等. 基于极限学习机参数迁移的域适应算法[J]. 自动化学报, 2018, 44(2): 311-317.
XU S H, MU X D, CHAI D, et al. Domain adaption algorithm with ELM parameter transfer[J]. Acta Automatica Sinica, 2018, 44(2): 311-317.
[16] WU S, ZHONG J, CAO W M, et al. Improving domain-specific classification by collaborative learning with adaptation networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5450-5457.
[17] GONG R, LI W, CHEN Y H, et al. DLOW: domain flow for adaptation and generalization[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway:IEEE, 2019: 2477-2486.
[18] YANG Z L, ZHAO J J, DHINGRA B, et al. GLoMo: unsupervised learning of transferable relational graphs[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018. Cambridge: MIT Press, 2018: 8964-8975.
[19] XU X, ZHOU X, VENKATESAN R, et al. d-SNE: domain adaptation using stochastic neighborhood embedding[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 2497-2506.
[20] DENG Z J, LUO Y C, ZHU J. Cluster alignment with a teacher for unsupervised domain adaptation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9943-9952.
[21] ZHANG Y H, ZHANG Y, WEI Y, et al. Fisher deep domain adaptation[C]//Proceedings of the 2020 SIAM International Conference on Data Mining, Cincinnati, May 7-9, 2020. Philadelphia: SIAM, 2020: 469-477.
[22] PENG X C, BAI Q X, XIA X D, et al. Moment matching for multi-source domain adaptation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1406-1415.
[23] WANG M, DENG W H. Deep visual domain adaptation: a survey[J]. Neurocomputing, 2018, 312: 135-153.
[24] GANIN Y, LEMPITSKY V S. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 1180-1189.
[25] PEI Z Y, CAO Z J, LONG M S, et al. Multi-adversarial domain adaptation[C]//Proceedings of the 32nd AAAI Con-ference on Artificial Intelligence, the 30th Innovative App-lications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3934-3941.
[26] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2962-2971.
[27] SANKARANARAYANA S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: aligning domains using generative adversarial networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 8503-8512.
[28] LONG M S, CAO Z J, WANG J M, et al. Conditional adversarial domain adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Dec 2-8, 2018. Cambridge: MIT Press, 2018: 1647-1657.
[29] WANG X M, LI L, YE W R, et al. Transferable attention for domain adaptation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park:AAAI, 2019: 5345-5352.
[30] SU J C, TSAI Y H, SOHN K, et al. Active adversarial domain adaptation[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 728-737.
[31] GLOROT X, BORDES A, BENGIO Y. Domain adaptation for largescale sentiment classification: a deep learning approach[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 513-520.
[32] GHIFARY M, KLEIJN W B, ZHANG M J, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]//LNCS 9908: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 597-613.
[33] ZHUANG F Z, CHENG X H, LUO P, et al. Supervised representation learning: transfer learning with deep autoen-coders[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 4119-4125.
[34] TSAI J C, CHIEN J T. Adversarial domain separation and adaptation[C]//Proceedings of the 27th IEEE International Workshop on Machine Learning for Signal Processing, Tokyo, Sep 25-28, 2017. Piscataway: IEEE, 2017: 1-6.
[35] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2242-2251.
[36] YI Z L, ZHANG H, TAN P, et al. DualGAN: unsupervised dual learning for image-to-image translation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2868-2876.
[37] SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains[C]//LNCS 6314: Proceedings of the 11th European Conference on Computer Vision, Crete, Sep 5-11, 2010. Berlin, Heidelberg: Springer, 2010: 213-226.
[38] GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 2066-2073.
[39] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[40] LECUN Y, BOTTOU L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
[41] LECUN Y, MATAN O, BOSER B E, et al. Handwritten zip code recognition with multilayer networks[C]//Proceedings of the 10th IAPR International Conference on Pattern Recognition, Atlantic City, Jun 16-21, 1990. Piscataway:IEEE, 1990: 35-40.
[42] NETZER Y, WANG T, COATES A, et al. Reading digits in natural images with unsupervised feature learning[C]//Proceedings of the 2011 NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Dec 12-17 , 2011. Red Hook: Curran Associates, 2011: 1-9.
[43] XIE S A, ZHENG Z B, CHEN L, et al. Learning semantic representations for unsupervised domain adaptation[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholmsm?ssan, Jul 10-15, 2018: 5419-5428. |