计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (3): 561-576.DOI: 10.3778/j.issn.1673-9418.2207080
孟伟,袁艺琳
出版日期:
2023-03-01
发布日期:
2023-03-01
MENG Wei, YUAN Yilin
Online:
2023-03-01
Published:
2023-03-01
摘要: 新型冠状病毒肺炎(COVID-19)疫情爆发以来,由于该病毒具有极强的传染性,所导致的感染人数与死亡人数持续增加。筛查疑似患者和早期诊断COVID-19是防止疫情恶化的重要措施之一。通过核酸检测和人工检查等方法在感染早期诊断出COVID-19是防止其在社会中爆发的最佳途径。然而核酸检测效率低下,仅仅依靠放射科专家诊断X射线图像和CT扫描图像存在耗时长且易出现诊断误差等问题。研究人员相继提出了基于迁移学习的计算机辅助诊断算法,可以最大程度地减少传统诊断方法所产生的问题,但目前关于迁移学习在新冠肺炎成像中的应用综述较少,因此总结和分析了当前国内外基于迁移学习技术诊断COVID-19的研究成果。针对模型类型进行分类讨论,分别从数据集来源、数据预处理方法、基于迁移学习的诊断模型、模型可视化、评价指标以及模型性能6个角度进行分析和比较。并指出了当前所面临的挑战和未来的发展方向,为今后进一步的研究工作奠定了基础。
孟伟, 袁艺琳. 迁移学习应用于新型冠状病毒肺炎诊断综述[J]. 计算机科学与探索, 2023, 17(3): 561-576.
MENG Wei, YUAN Yilin. Review of Transfer Learning Applied to Diagnosis of COVID-19[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(3): 561-576.
[1] CHAN J F, YUAN S, KOK K H, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster[J]. Lancet, 2020, 395: 514-523. [2] 吕晓亚, 宋磊, 马昭, 等. 新型冠状病毒疫苗免疫策略的强化和优化[J]. 上海交通大学学报(医学版), 2021, 41(12): 1545-1550. LV X Y, SONG L, MA Z, et al. Strengthening and optimization of immunization strategy for COVID-19 vaccines[J]. Journal of Shanghai Jiao Tong University (Medical Science), 2021, 41(12): 1545-1550. [3] SINGHAL T. A review of coronavirus disease-2019 (COVID-19)[J]. Indian Journal of Pediatrics, 2020, 87(4): 281-286. [4] WIKRAMARATNA P, PATON R S, GHAFARI M, et al. Estimating false-negative detection rate of SARS-CoV-2 by RT-PCR [EB/OL]. [2020-04-14]. https://www.medrxiv.org/content/10.1101/2020.04.05.20053355v2. [5] XIE X, ZHONG Z, ZHAO W, et al. Chest CT for typical 2019-nCoV pneumonia: relationship to negative RT-PCR testing[J]. Radiology, 2020, 296(2): 200343. [6] 李振昊, 高小玲, 杨小娟, 等. 新型冠状病毒核酸检测分析[J]. 检验医学与临床, 2020, 17(10): 1313-1315. LI Z H, GAO X L, YANG X J, et al. Nucleic acid detection and analysis of COVID-19[J]. Laboratory Medicine and Clinic, 2020, 17(10): 1313-1315. [7] GUAN W J, NI Z Y, HU Y, et al. Clinical characteristics of coronavirus disease 2019 in China[J].?The New England Journal of Medicine, 2020, 382(18): 1708-1720. [8] HUANG C, WANG Y, LI X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395: 497-506. [9] 赵张平, 朱永高, 杨燕, 等. 新冠肺炎初诊影像学表现与特征浅析[J]. 罕少疾病杂志, 2021, 28(5): 27-30. ZHAO Z P, ZHU Y G, YANG Y, et al. The radiographic findings and features of initial HRCT for corona virus disease 2019(COVID-19)[J]. Journal of Rare and Uncommon Diseases, 2021, 28(5): 27-30. [10] CHUNG M, BERNHEIM A, MEI X, et al. CT imaging features of 2019 novel coronavirus (2019-nCoV)[J]. Radiology, 2020, 295(1): 202-207. [11] LI Y, XIA L. Coronavirus disease 2019 (COVID-19): role of chest CT in diagnosis and management[J]. American Journal of Roentgenology, 2020, 214(6): 1280-1286. [12] KANNE J P. Chest CT findings in 2019 novel coronavirus (2019-nCoV) infections from Wuhan, China: key points for the radiologist[J]. Radiology, 2020, 295(1):16-17. [13] BERNHEIM A, MEI X, HUANG M, et al. Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection[J]. Radiology, 2020, 295(3): 200463. [14] GREENSPAN H, GINNEKEN B, SUMMERS R. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1153-1159. [15] BAR Y, DIAMANT I, WOLF L, et al. Chest pathology detection using deep learning with non-medical training[C]//Proceedings of the 12th IEEE International Symposium on Biomedical Imaging, Brooklyn, Apr 16-19, 2015. Piscataway: IEEE, 2015: 294-297. [16] WU K, CHEN X, DING M. Deep learning based classification of focal liver lesions with contrast-enhanced ultrasound[J]. Optik, 2014, 125(15): 4057-4063. [17] BURLINA P, BILLINGS S, JOSHI N, et al. Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods[J]. PLoS ONE, 2017, 12(8): e0184059. [18] SHIN H, ROTH H, GAO M, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1285-1298. [19] SIRINUKUNWATTANA K, SHAN E, TSANG Y W, et al. Locality sensitive deep learning for detection and classification of nuclei in routine colon cancer histology images[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1196-1206. [20] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 20-23, 2014. Washington: IEEE Computer Society, 2014: 580-587. [21] DA NóBREGA R V M, PEIXOTO S A, DA SILVA S P P, et al. Lung nodule classification via deep transfer learning in CT lung images[C]//Proceedings of the 31st IEEE Inter-national Symposium on Computer-Based Medical Systems, Karlstad, Jun 18-21, 2018. Washington: IEEE Computer Society, 2018: 244-249. [22] KRIZHEVSKY A, SUTSKEVER I, HINTON G. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90. [23] BEHZADI-KHORMOUJI H, ROSTAMI H, SALEHI S, et al. Deep learning, reusable and problem-based architectures for detection of consolidation on chest X-ray images[J]. Computer Methods and Programs in Biomedicine, 2020, 185: 105162. [24] COHEN J P, MORRISON P, DAO L. COVID-19 image data collection[J]. arXiv:2003.11597, 2020. [25] KERMANY D S, GOLDBAUM M, CA I W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172(5): 1122-1131. [26] CHOWDHURY M, RAHMAN T, KHANDAKAR A, et al. Can AI help in screening viral and COVID-19 pneumonia?[J]. IEEE Access, 2020, 8: 132665-132676. [27] WANG X S, PENG Y F, LU L, et al. ChestX-Ray8: hospital-scale chest X-RAY database and benchmarks on weakly-supervised classification and localization of common thorax diseases[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3462-3471. [28] WANG L, LIN Z Q, WONG A. COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images[J]. Scientific Reports, 2020, 10(1): 19549. [29] HE X, YANG X, ZHANG S, et al. Sample-efficient deep learning for COVID-19 diagnosis based on CT scans[EB/OL]. [2020-04-13]. https://www.medrxiv.org/content/10.1101/2020. 04.13.20063941v1. [30] ZHANG K, LIU X, SHEN J, et al. Clinically applicable AI system for accurate diagnosis, quantitative measurements, and prognosis of COVID-19 pneumonia using computed tomography[J]. Cell, 2020, 181(6): 1423-1433. [31] SOARES E, ANGELOV P, BIASO S, et al. SARS-CoV-2 CT-scan dataset: a large dataset of real patients CT scans for SARS-CoV-2 identification[EB/OL]. [2020-05-14]. https://www.medrxiv.org/content/10.1101/2020.04.24.20078584v3. [32] RAHIMZADEH M, ATTAR A, SAKHAEI S. A fully automated deep learning-based network for detecting COVID-19 from a new and large lung CT scan dataset[J]. Biomedical Signal Processing and Control, 2021, 68: 102588. [33] MOROZOV S P, ANDREYCHENKO A E, PAVLOV N A, et al. MosMedData: chest CT scans with COVID-19 related findings dataset[J]. arXiv:2005.06465, 2020. [34] DE LA IGLESIA VAYá M, SABORIT J M, MONTELL J A, et al. BIMCV COVID-19+: a large annotated dataset of RX and CT images from COVID-19 patients[J]. arXiv:2006.01174, 2020. [35] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]//Advances in Neural Information Processing Systems 27, Montreal, Dec 8-13, 2014. Cambridge: MIT Press, 2014: 2672-2680. [36] AYANA G, DESE K, CHOE S W. Transfer learning in breast cancer diagnoses via ultrasound imaging[J]. Cancers, 2021, 13(4): 738. [37] SHEYKHIVAND S, MOUSAVI Z, MOJTAHEDI S, et al. Developing an efficient deep neural network for automatic detection of COVID-19 using chest X-ray images[J]. Ale-xandria Engineering Journal, 2021, 60(3): 2885-2903. [38] GIFANI P, SHALBAF A, VAFAEEZADEH M. Automated detection of COVID-19 using ensemble of transfer learning with deep convolutional neural network based on CT scans[J]. International Journal of Computer Assisted Radiology and Surgery, 2021, 16(1): 115-123. [39] AL-KARAWI D, AL-ZAIDI S, POLUS N, et al. Machine learning analysis of chest CT scan images as a comp-lementary digital test of coronavirus (COVID-19) patients[EB/OL]. [2020-04-17]. https://www.medrxiv.org/content/10. 1101/2020.04.13.20063479v1. [40] LV D, QI W T, LI Y X, et al. A cascade network for detecting COVID-19 using chestx-rays [J]. arXiv:2005.01468, 2020. [41] TAJBAKHSH N, SHIN J Y, GURUDU S R, et al. Con-volutional neural networks for medical image analysis: full training or fine tuning?[J]. IEEE Transactions on Medical Imaging, 2016, 35(5): 1299-1312. [42] WEISS K, KHOSHGOFTAAR T M, WANG D D. A survey of transfer learning[J]. Journal of Big Data, 2016, 3(1): 9. [43] LI Z, HOIEM D. Learning without forgetting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 40(12): 2935-2947. [44] RAHAMAN M M, LI C, YAO Y, et al. Identification of COVID-19 samples from chest X-Ray images using deep learning: a comparison of transfer learning approaches[J]. Journal of X-Ray Science and Technology, 2020, 28(5): 821-839. [45] ZHANG Y D, SATAPATHY S C, ZHANG X, et al. COVID-19 diagnosis via DenseNet and optimization of transfer learning setting[J]. Cognitive Computation, 2021(5): 1-17. [46] KUMAR N, GUPTA M, GUPTA D, et al. Novel deep transfer learning model for COVID-19 patient detection using X-ray chest images[J]. Journal of Ambient Intelligence and Humanized Computing , 2021, 11(1): 1-10. [47] RAJARAMAN S, SIEGELMAN J, ALDERSON P O, et al. Iteratively pruned deep learning ensembles for COVID-19 detection in chest X-rays[J]. IEEE Access, 2020, 8: 115041-115050. [48] KUNDU R, SINGH P K, MIRJALILI S, et al. COVID-19 detection from lung CT-Scans using a fuzzy integral-based CNN ensemble[J]. Computers in Biology and Medicine, 2021, 138: 104895. [49] PAUL A, BASU A, MAHMUD M, et al. Inverted bell-curve-based ensemble of deep learning models for detection of COVID-19 from chest X-rays[J]. Neural Computing and Applications, 2022, 30: 1-15. [50] SAMSON A, ANNAVARAPU C. Deep learning-based improved snapshot ensemble technique for COVID-19 chest X-ray classification[J]. Applied Intelligence, 2021, 51(4): 3104-3120. [51] NIU S, LIU M, LIU Y, et al. Distant domain transfer learning for medical imaging[J]. IEEE Journal of Biomedical and Health Informatics, 2021, 25(10): 3784-3793. [52] PERUMAL V, NARAYANAN V, RAJASEKAR S. Detection of COVID-19 using CXR and CT images using transfer learning and haralick features[J]. Applied Intelligence, 2021, 51(1): 341-358. [53] UM A, MZH A, MOA B, et al. SAM: self-augmentation mechanism for COVID-19 detection using chest X-ray images[J]. Knowledge-Based Systems, 2022, 241: 108207. [54] LE Q V, KARPENKO A, NGIAM J, et al. ICA with reconstruction cost for efficient overcomplete feature learning[C]//Proceedings of the 25th Annual Conference on Neural Information Processing Systems 2011, Granada, Dec 12-14,2011. Red Hook: Curran Associates, 2011: 1017-1025. [55] JOKANDAN A S, ASGHARNEZHAD H, JOKANDAN S S, et al. An uncertainty-aware transfer learning-based framework for COVID-19 diagnosis[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(4): 1408-1417. [56] ZHOU B L, KHOSLA A, LAPEDRIZA A, et al. Learning deep features for discriminative localization[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2921-2929. [57] CHATTOPADHAY A, SARKAR A, HOWLADER P, et al.Grad-CAM++: generalized gradient-based visual explanations for deep convolutional networks[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Nevada, Mar 12-25, 2018. Washington: IEEE Computer Society, 2018: 839-847. [58] BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. PLoS One, 2015, 10(7):e0130140. [59] RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?” Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Con-ference on Knowledge Discovery and Data Mining, San Fran-cisco, Aug 13-17, 2016. New York: ACM, 2016: 1135-1144. [60] HILMIZEN N, BUSTAMAM A, SARWINDA D. The multi-modal deep learning for diagnosing COVID-19 pneumonia from chest CT-scan and X-ray images[C]//Proceedings of the 3rd International Seminar on Research of Information Technology and Intelligent Systems, Yogyakarta, Dec 10-11, 2020. Piscataway: IEEE, 2020: 26-31. [61] ABDAR M, SAMAMI M, MAHMOODABAD S D, et al. Uncertainty quantification in skin cancer classification using three-way decision-based Bayesian deep learning[J]. Computers in Biology and Medicine, 2021, 135(10): 104418. [62] JUAN M, ROBERTO P, DANIEL R. Calibration of deep probabilistic models with decoupled Bayesian neural networks[J]. Neurocomputing, 2020, 407: 194-205. [63] NEAL R M. Bayesian learning for neural networks[M]. Berlin, Heidelberg: Springer, 1996. [64] KUPINSKI M A, HOPPIN J W, CLARKSON E, et al. Ideal-observer computation in medical imaging with use of Markov-chain Monte Carlo techniques[J]. Journal of the Optical Society of America A Optics Image Science & Vision, 2003, 20(3): 430-438. [65] GAL Y, GHAHRAMANI Z. Dropout as a Bayesian appro-ximation: representing model uncertainty in deep learning[C]//Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016. New York: ACM, 2016: 1050-1059. [66] CHEN T Q, FOX E B, GUESTRIN C. Stochastic gradient Hamiltonian Monte Carlo[C]//Proceedings of the 2014 Interna-tional Conference on Machine Learning, Beijing, Jun 21-26, 2014. New York: ACM, 2014: 1683-1691. |
[1] | 杜鹏, 张有明, 朱郑州, 李国才. 迁移学习在低资源场景实体识别中的应用研究[J]. 计算机科学与探索, 2023, 17(4): 912-921. |
[2] | 周晶雨, 王士同. 对不平衡数据的多源在线迁移学习算法[J]. 计算机科学与探索, 2023, 17(3): 687-700. |
[3] | 刘春磊, 陈天恩, 王聪, 姜舒文, 陈栋. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1): 53-73. |
[4] | 林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116. |
[5] | 徐光生, 王士同. 基于潜在的低秩约束的不完整模态迁移学习[J]. 计算机科学与探索, 2022, 16(12): 2775-2787. |
[6] | 常田, 章宗长, 俞扬. 随机集成策略迁移[J]. 计算机科学与探索, 2022, 16(11): 2531-2536. |
[7] | 李猛, 李艳玲, 林民. 命名实体识别的迁移学习研究综述[J]. 计算机科学与探索, 2021, 15(2): 206-218. |
[8] | 赵鹏飞,李艳玲,林民. 面向迁移学习的意图识别研究进展[J]. 计算机科学与探索, 2020, 14(8): 1261-1274. |
[9] | 任豪,刘柏嵩,孙金杨. 面向知识迁移的跨领域推荐算法研究进展[J]. 计算机科学与探索, 2020, 14(11): 1813-1827. |
[10] | 么素素,王宝亮,侯永宏. 绝对不平衡样本分类的集成迁移学习算法[J]. 计算机科学与探索, 2018, 12(7): 1145-1153. |
[11] | 魏彩娜,钱鹏江,奚臣. 域间F-范数正则化迁移谱聚类方法[J]. 计算机科学与探索, 2018, 12(3): 472-483. |
[12] | 程旸,王士同,杭文龙. 区别性知识利用的迁移分类学习[J]. 计算机科学与探索, 2017, 11(3): 427-437. |
[13] | 谢丽潇,邓赵红,史荧中,王士同. 面向癫痫EEG自适应识别的迁移径向基神经网络[J]. 计算机科学与探索, 2016, 10(12): 1729-1736. |
[14] | 毛发贵,李碧雯,沈备军. 基于实例迁移的跨项目软件缺陷预测[J]. 计算机科学与探索, 2016, 10(1): 43-55. |
[15] | 李翔,朱全银. 联合聚类和评分矩阵共享的协同过滤推荐[J]. 计算机科学与探索, 2014, 8(6): 751-759. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||