计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (5): 1168-1179.DOI: 10.3778/j.issn.1673-9418.2108111
马娜,温廷新,贾旭
出版日期:
2023-05-01
发布日期:
2023-05-01
MA Na, WEN Tingxin, JIA Xu
Online:
2023-05-01
Published:
2023-05-01
摘要: 为实现目标域样本能够与源域中同类样本准确对齐,并在保证样本准确识别率的条件下进一步提高不同类别样本特征间的可区分性,提出了一种带有类间差异约束的域适应模型。首先,该模型采用深度卷积神经网络对源域样本进行了有监督学习,并在训练过程中基于提出的类间差异测量函数对源域样本特征加以类间差异性约束;其次,该模型采用了多对抗域鉴别网络结构,其中提出了一种目标域样本伪标签计算方法,从而将无标签的样本指定到合理的域鉴别网络进行训练;最后,通过最小化分类损失与最大化域鉴别损失,获得最优特征提取器与特征分类器。实验结果表明,对于4种数据集,提出的模型在目标域上平均识别准确率可以达到0.860,同类间的平均距离、不同类间的平均距离、目标域中样本错误识别率相对于改进前分别降低0.003,提升0.065,降低0.025,从而验证了提出模型的性能得到了明显提升。
马娜, 温廷新, 贾旭. 具有类间差异约束的多对抗深度域适应模型[J]. 计算机科学与探索, 2023, 17(5): 1168-1179.
MA Na, WEN Tingxin, JIA Xu. Multiple Adversarial Deep Domain Adaptation Model with Inter-class Difference Constraint[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1168-1179.
[1] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述:一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515-548. FAN C N, LIU P, XIAO T, et al. A review of deep domain adaptation: general situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515-548. [2] LONG M S, ZHU H, WANG J M, et al. Unsupervised domain adaptation with residual transfer networks[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 136-144. [3] TZENG E, HOFFMAN J, ZHANG N, et al. Deep domain confusion: maximizing for domain invariance[J]. arXiv:1412.3474, 2014. [4] LONG M S, CAO Y, WANG J M, et al. Learning transferable features with deep adaptation networks[C]//Proceedings of the 32nd International Conference on Machine Learning, Lile, Jul 6-11, 2015: 97-105. [5] LONG M S, ZHU H, WANG J M, et al. Deep transfer learning with joint adaptation networks[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 2208-2217. [6] YAN H L, DING Y K, LI P H, et al. Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation[C]//Proceedings of the 2017 IEEE Con-ference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 945-954. [7] SHEN J, QU Y R, ZHANG W N, et al. Wasserstein distance guided representation learning for domain adaptation[C]//Proceedings of the 32nd AAAI Conference on Artificial Intelligence, the 30th Innovative Applications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 4058-4065. [8] ZHOU G Y, HUANG J X. Modeling and mining domain shared knowledge for sentiment analysis[J]. ACM Transactions on Information Systems, 2017, 36(2): 1-36. [9] PENG X C, SAENKO K. Synthetic to real adaptation with generative correlation alignment networks[C]//Proceedings of the 2018 IEEE Winter Conference on Applications of Computer Vision, Lake Tahoe, Mar 12-15, 2018. Washington: IEEE Computer Society, 2018: 1982-1991. [10] SUN B C, SAENKO K. Deep CORAL: correlation alignment for deep domain adaptation[C]//LNCS 9915: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 8-16, 2016. Cham: Springer, 2016: 443-450. [11] CHEN C, CHEN Z H, JIANG B Y, et al. Joint domain alignment and discriminative feature learning for unsupervised deep domain adaptation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 3296-3303. [12] LI Y J, SWERSKY K, ZEMEL R S. Generative moment matching networks[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 1718-1727. [13] ZELLINGER W, GRUBINGER T, LUGHOFER E, et al. Central moment discrepancy (CMD) for domain-invariant representation learning[J]. arXiv:1702.08811, 2017. [14] ROZANTSEV A, SALZMANN M, FUA P. Beyond sharing weights for deep domain adaptation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2019, 41(4): 801-814. [15] 许夙晖, 慕晓冬, 柴栋, 等. 基于极限学习机参数迁移的域适应算法[J]. 自动化学报, 2018, 44(2): 311-317. XU S H, MU X D, CHAI D, et al. Domain adaption algorithm with ELM parameter transfer[J]. Acta Automatica Sinica, 2018, 44(2): 311-317. [16] WU S, ZHONG J, CAO W M, et al. Improving domain-specific classification by collaborative learning with adaptation networks[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5450-5457. [17] GONG R, LI W, CHEN Y H, et al. DLOW: domain flow for adaptation and generalization[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway:IEEE, 2019: 2477-2486. [18] YANG Z L, ZHAO J J, DHINGRA B, et al. GLoMo: unsupervised learning of transferable relational graphs[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018. Cambridge: MIT Press, 2018: 8964-8975. [19] XU X, ZHOU X, VENKATESAN R, et al. d-SNE: domain adaptation using stochastic neighborhood embedding[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 2497-2506. [20] DENG Z J, LUO Y C, ZHU J. Cluster alignment with a teacher for unsupervised domain adaptation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9943-9952. [21] ZHANG Y H, ZHANG Y, WEI Y, et al. Fisher deep domain adaptation[C]//Proceedings of the 2020 SIAM International Conference on Data Mining, Cincinnati, May 7-9, 2020. Philadelphia: SIAM, 2020: 469-477. [22] PENG X C, BAI Q X, XIA X D, et al. Moment matching for multi-source domain adaptation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 1406-1415. [23] WANG M, DENG W H. Deep visual domain adaptation: a survey[J]. Neurocomputing, 2018, 312: 135-153. [24] GANIN Y, LEMPITSKY V S. Unsupervised domain adaptation by backpropagation[C]//Proceedings of the 32nd International Conference on Machine Learning, Lille, Jul 6-11, 2015: 1180-1189. [25] PEI Z Y, CAO Z J, LONG M S, et al. Multi-adversarial domain adaptation[C]//Proceedings of the 32nd AAAI Con-ference on Artificial Intelligence, the 30th Innovative App-lications of Artificial Intelligence, and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence, New Orleans, Feb 2-7, 2018. Menlo Park: AAAI, 2018: 3934-3941. [26] TZENG E, HOFFMAN J, SAENKO K, et al. Adversarial discriminative domain adaptation[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 2962-2971. [27] SANKARANARAYANA S, BALAJI Y, CASTILLO C D, et al. Generate to adapt: aligning domains using generative adversarial networks[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 8503-8512. [28] LONG M S, CAO Z J, WANG J M, et al. Conditional adversarial domain adaptation[C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems, Montréal, Dec 2-8, 2018. Cambridge: MIT Press, 2018: 1647-1657. [29] WANG X M, LI L, YE W R, et al. Transferable attention for domain adaptation[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park:AAAI, 2019: 5345-5352. [30] SU J C, TSAI Y H, SOHN K, et al. Active adversarial domain adaptation[C]//Proceedings of the 2020 IEEE Winter Conference on Applications of Computer Vision, Snowmass Village, Mar 1-5, 2020. Piscataway: IEEE, 2020: 728-737. [31] GLOROT X, BORDES A, BENGIO Y. Domain adaptation for largescale sentiment classification: a deep learning approach[C]//Proceedings of the 28th International Conference on Machine Learning, Bellevue, Jun 28-Jul 2, 2011. Madison: Omnipress, 2011: 513-520. [32] GHIFARY M, KLEIJN W B, ZHANG M J, et al. Deep reconstruction-classification networks for unsupervised domain adaptation[C]//LNCS 9908: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 597-613. [33] ZHUANG F Z, CHENG X H, LUO P, et al. Supervised representation learning: transfer learning with deep autoen-coders[C]//Proceedings of the 24th International Joint Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 4119-4125. [34] TSAI J C, CHIEN J T. Adversarial domain separation and adaptation[C]//Proceedings of the 27th IEEE International Workshop on Machine Learning for Signal Processing, Tokyo, Sep 25-28, 2017. Piscataway: IEEE, 2017: 1-6. [35] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2242-2251. [36] YI Z L, ZHANG H, TAN P, et al. DualGAN: unsupervised dual learning for image-to-image translation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2868-2876. [37] SAENKO K, KULIS B, FRITZ M, et al. Adapting visual category models to new domains[C]//LNCS 6314: Proceedings of the 11th European Conference on Computer Vision, Crete, Sep 5-11, 2010. Berlin, Heidelberg: Springer, 2010: 213-226. [38] GONG B Q, SHI Y, SHA F, et al. Geodesic flow kernel for unsupervised domain adaptation[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, Jun 16-21, 2012. Washington: IEEE Computer Society, 2012: 2066-2073. [39] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [40] LECUN Y, BOTTOU L. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. [41] LECUN Y, MATAN O, BOSER B E, et al. Handwritten zip code recognition with multilayer networks[C]//Proceedings of the 10th IAPR International Conference on Pattern Recognition, Atlantic City, Jun 16-21, 1990. Piscataway:IEEE, 1990: 35-40. [42] NETZER Y, WANG T, COATES A, et al. Reading digits in natural images with unsupervised feature learning[C]//Proceedings of the 2011 NIPS Workshop on Deep Learning and Unsupervised Feature Learning, Granada, Dec 12-17 , 2011. Red Hook: Curran Associates, 2011: 1-9. [43] XIE S A, ZHENG Z B, CHEN L, et al. Learning semantic representations for unsupervised domain adaptation[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholmsm?ssan, Jul 10-15, 2018: 5419-5428. |
[1] | 李赟波, 王士同. 多源域分布下优化权重的迁移学习Boosting方法[J]. 计算机科学与探索, 2023, 17(6): 1441-1452. |
[2] | 杜鹏, 张有明, 朱郑州, 李国才. 迁移学习在低资源场景实体识别中的应用研究[J]. 计算机科学与探索, 2023, 17(4): 912-921. |
[3] | 周晶雨, 王士同. 对不平衡数据的多源在线迁移学习算法[J]. 计算机科学与探索, 2023, 17(3): 687-700. |
[4] | 孟伟, 袁艺琳. 迁移学习应用于新型冠状病毒肺炎诊断综述[J]. 计算机科学与探索, 2023, 17(3): 561-576. |
[5] | 刘春磊, 陈天恩, 王聪, 姜舒文, 陈栋. 小样本目标检测研究综述[J]. 计算机科学与探索, 2023, 17(1): 53-73. |
[6] | 林佳伟, 王士同. 用于无监督域适应的深度对抗重构分类网络[J]. 计算机科学与探索, 2022, 16(5): 1107-1116. |
[7] | 徐光生, 王士同. 基于潜在的低秩约束的不完整模态迁移学习[J]. 计算机科学与探索, 2022, 16(12): 2775-2787. |
[8] | 常田, 章宗长, 俞扬. 随机集成策略迁移[J]. 计算机科学与探索, 2022, 16(11): 2531-2536. |
[9] | 李猛, 李艳玲, 林民. 命名实体识别的迁移学习研究综述[J]. 计算机科学与探索, 2021, 15(2): 206-218. |
[10] | 赵鹏飞,李艳玲,林民. 面向迁移学习的意图识别研究进展[J]. 计算机科学与探索, 2020, 14(8): 1261-1274. |
[11] | 任豪,刘柏嵩,孙金杨. 面向知识迁移的跨领域推荐算法研究进展[J]. 计算机科学与探索, 2020, 14(11): 1813-1827. |
[12] | 么素素,王宝亮,侯永宏. 绝对不平衡样本分类的集成迁移学习算法[J]. 计算机科学与探索, 2018, 12(7): 1145-1153. |
[13] | 魏彩娜,钱鹏江,奚臣. 域间F-范数正则化迁移谱聚类方法[J]. 计算机科学与探索, 2018, 12(3): 472-483. |
[14] | 程旸,王士同,杭文龙. 区别性知识利用的迁移分类学习[J]. 计算机科学与探索, 2017, 11(3): 427-437. |
[15] | 谢丽潇,邓赵红,史荧中,王士同. 面向癫痫EEG自适应识别的迁移径向基神经网络[J]. 计算机科学与探索, 2016, 10(12): 1729-1736. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 108
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 118
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||