[1] 赵晓, 王铮, 黄程侃,等. 基于改进A*算法的移动机器人路径规划[J]. 机器人, 2018, 40(6): 903-910.
ZHAO X, WANG Z, HUANG C K, et al. Mobile robot path planning based on an improved A* algorithm[J]. Robot, 2018, 40(6): 903-910.
[2] 王洪斌, 尹鹏衡, 郑维, 等. 基于改进的A*算法与动态窗口法的移动机器人路径规划[J]. 机器人, 2020, 42(3): 92-99.
WANG H B, YI P H, ZHENG W, et al. Mobile robot path planning based on improved A* algorithm and dynamic window method[J]. Robot, 2020, 42(3): 92-99.
[3] TAO Y, GAO H, REN F, et al. A mobile service robot global path planning method based on ant colony optimiza-tion and fuzzy control[J]. Applied Sciences, 2021, 11(8): 3605.
[4] ZHAO H R, ZHOU H, YANG G Q. Research on global path planning of artificial intelligence robot based on improved ant colony algorithm[J]. Journal of Physics: Conference Series, 2021, 1744(2): 022032.
[5] GUO X H, JI M J, ZHAO Z W, et al. Global path planning and multi-objective path control for unmanned surface vehicle based on modified particle swarm optimization (PSO) algorithm[J]. Ocean Engineering, 2020, 216: 107693.
[6] LONG Y, ZUO Z M, SU Y X, et al. An A*-based bacterial foraging optimisation algorithm for global path planning of unmanned surface vehicles[J]. Journal of Navigation, 2020, 73(6): 1247-1262.
[7] CHENG Z, ZHANG C, AO L, et al. An improved A* algori-thm applying to path planning of games[J]. Journal of Physics: Conference Series, 2020, 1631(1): 012068.
[8] TIAN L. A path planning method for mobile robot based on A* and ant-colony algorithms[J]. Journal of Innovation and Social Science Research, 2020, 7(1).
[9] JI X Y, FENG S. Improvement and fusion of A* algorithm and dynamic window approach considering complex environ-mental information[J]. Arabian Journal for Science and Engi-neering, 2021, 46(8): 1-15.
[10] XIE L, XUE S F, ZHANG J F, et al. A path planning app-roach based on multi-direction A* algorithm for ships navi-gating within wind farm waters[J]. Ocean Engineering, 2019, 184: 311-322.
[11] DAI X L, LONG S, ZHANG Z W, et al. Mobile robot path planning based on ant colony algorithm with A* heuristic method[J]. Frontiers in Neurorobotics, 2019, 13: 15.
[12] FERGUSON D, STENTZ A. Using interpolation to improve path planning: the field D* algorithm[J]. Journal of Field Robotics, 2006, 23(2): 79-101.
[13] PERKINS S, MARAIS P, GAIN J, et al. Field D* path-finding on weighted triangulated and tetrahedral meshes[J]. Autonomous Agents and Multi-agent Systems, 2013, 26(3): 354-388.
[14] GAO B, XU D M, ZHANG F B. The algorithm for the dynamic object based on Field D algorithm and the method of path extraction[J]. Fire Control & Command Control, 2010, 35(8): 98-102.
[15] 王琼, 于登云, 贾阳. 一种基于地形方向通行性的改进Theta*算法[J]. 空间科学学报, 2016, 36(3): 401-406.
WANG Q, YU D Y, JIA Y. An improved Theta* algorithm based on terrain directional traversability[J]. Chinese Journal of Space Science, 2016, 36(3):?401-406.
[16] DANIEL K, NASH A, KOENIG S, et al. Theta*: any-angle path planning on grids[J]. Journal of Artificial Intelligence Research, 2010, 39(1): 533-579.
[17] 王琼, 于登云, 贾阳. Risk Theta*: 一种基于地形危险度的任意航向路径规划算法[J]. 深空探测学报, 2014, 1(4): 269-274.
WANG Q, YU D Y, JIA Y. Risk Theta*: an any angle path planning algorithm based on terrain risk[J]. Journal of Deep Space Exploration, 2014, 1(4): 269-274.
[18] 肖国宝, 严宣辉. 一种基于改进Theta*的机器人路径规划算法[J]. 智能系统学报, 2013, 8(1): 58-65.
XIAO G B, YAN X H. A path planning algorithm based on improved Theta* for mobile robot[J]. CAAI Transactions on Intelligent Systems, 2013, 8(1): 58-65.
[19] 毛杰, 张昊, 李海燕. 基于Lazy Theta*算法的反潜巡逻飞机航路规划研究[J]. 舰船电子工程, 2020, 40(12): 40-43.
MAO J, ZHANG H, LI H Y. Research of anti-submarine patrol aircraft route planning based on Lazy Theta* alogri-thm[J]. Ship Electronic Engineering, 2020, 40(12): 40-43.
[20] FARIA M, MARíN R, POPOVI? M, et al. Efficient lazy Theta* path planning over a sparse grid to explore large 3D volumes with a multirotor UAV[J]. Sensors, 2019, 19(1): 174.
[21] DERGACHEV S, YAKOVLEV K, PRAKAPOVICH R. A combination of Theta*, ORCA and push and rotate for multi-agent navigation[C]//LNCS 12336: Proceedings of the 5th International Conference on Interactive Collaborative Robo-tics, St Petersburg, Oct 7-9, 2020. Cham: Springer, 2020: 55-66. |