[1] 王立才, 孟祥武, 张玉洁. 上下文感知推荐系统[J]. 软件学报, 2012, 23(1): 1-20.
WANG L C, MENG X W, ZHANG Y J. Context-aware recommender systems[J]. Journal of Software, 2012, 23(1): 1-20.
[2] BREESE J S, HECKERMAN D, KADIE C. Empirical anal-ysis of predictive algorithms for collaborative filtering[C]// Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Madison, Jul 24-26, 1998. San Francisco: Morgan Kaufmann Publishers Inc, 1998: 43-52.
[3] LU Z Q, DOU Z C, LIAN J X, et al. Content-based colla-borative filtering for news topic recommendation[C]//Proceedings of the 29th Conference on Artificial Intellig-ence, Austin, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 217-223.
[4] JAMALI M, ESTER M. A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the 4th ACM Conference on Recom-mender Systems, Barcelona, Sep 26-30, 2010. New York: ACM, 2010: 135-142.
[5] MA H, ZHOU D Y, LIU C, et al. Recommender systems with social regularization[C]//Proceedings of the 4th International Conference on Web Search and Web Data Mining, Hong Kong, China, Feb 9-12, 2011. New York: ACM, 2011: 287-296.
[6] GUO G B, ZHANG J, YORKE-SMITH N. TrustSVD: colla-borative filtering with both the explicit and implicit influence of user trust and of item ratings[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 123-129.
[7] LI X C, WANG X, CHEN L, et al. Hierarchical fashion graph network for personalized outfit recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Austin, Jul 25-30, 2020. Menlo Park: AAAI, 2020: 159-168.
[8] HE C Y, XIE T, RONG Y, et al. Bipartite graph neural net-works for efficient node representation learning[J]. arXiv:1906.11994, 2019.
[9] FAN W Q, MA Y, YIN D W, et al. Deep social collabora-tive filtering[C]//Proceedings of the 13th ACM Conference on Recommender Systems, Copenhagen, Sep 16-20, 2019. New York: ACM, 2019: 305-313.
[10] WANG X, HE X N, WANG M, et al. Neural graph colla-borative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 165-174.
[11] YU J L, GAO M, LI J D, et al. Adaptive implicit friends identification over heterogeneous network for social recom-mendation[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Oct 22-26, 2018. New York: ACM, 2018: 357-366.
[12] 郑诚, 王建. 联合注意力和自编码器的协同过滤推荐[J]. 计算机工程与应用, 2021, 57(10): 139-145.
ZHENG C, WANG J. Collaborative filtering recommen-dation for joint attention and autoencoder[J]. Computer Engineering and Applications, 2021, 57(10): 139-145.
[13] 李琳, 唐守廉. 基于多层注意力表示的音乐推荐模型[J]. 电子学报, 2020(9): 1672-1679.
LI L, TANG S L. Hierarchical attention representation model for music recommendation[J]. Acta Electronica Sinica, 2020(9): 1672-1679.
[14] 伍鑫, 黄勃, 方志军, 等. 序列生成对抗网络在推荐系统中的应用[J]. 计算机工程与应用, 2020, 56(23): 175-179.
WU X, HUANG B, FANG Z J, et al. Application of sequence generative adversarial network in recommendation system[J]. Computer Engineering and Applications, 2020, 56(23): 175-179.
[15] GAO M, CHEN L H, ZHOU A Y, et al. BiNE: bipartite network embedding[C]//Proceedings of the 41st Internat-ional ACM SIGIR Conference on Research and Develop-ment in Information Retrieval, Ann Arbor, Jun 8-12, 2018. New York: ACM, 2018: 715-724.
[16] FAN W Q, MA Y, LI Q, et al. Graph neural networks for social recommendation[C]//Proceedings of the 2019 World Wide Web Conference, San Francisco, May 13-17, 2019. New York: ACM, 2019: 417-426.
[17] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[18] WILLIAM L, HAMILTON R Y, JURE L. Inductive repre-sentation learning on large graphs[J]. arXiv:1706.02216, 2017.
[19] WU L, SUN P J, FU Y J, et al. A neural influence diffusion model for social recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, Jul 21-25, 2019. New York: ACM, 2019: 235-244.
[20] XIONG F, SHEN W H, CHEN H S, et al. Exploiting implicit influence from information propagation for social recommendation[J]. IEEE Transactions on Cybernetics, 2020, 50(10): 4186-4199.
[21] SONG C Y, WANG B, JIANG Q X, et al. Social recom-mendation with implicit social influence[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Canada, Jul 11-15, 2021. New York: ACM, 2021: 1788-1792.
[22] LIU Y, CHEN L, HE X N, et al. Modelling high-order social relations for item recommendation[J]. arXiv:2003.10149, 2020.
[23] STEFFEN R, CHRISTOPH F, ZENO G, et al. BPR: Bayesian personalized ranking from implicit feedback[C]//Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence, Arlington, Jun 18-21, 2009: 452-461.
[24] KOREN Y. Factorization meets the neighborhood: a multi-faceted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Las Vegas, Aug 24-27, 2008. New York: ACM, 2008: 426-434.
[25] STEFFEN R. Factorization machines[C]//Proceedings of the 10th IEEE International Conference on Data Mining, Sydney, Dec 14-17, 2010. Washington: IEEE Computer Society, 2010: 995-1000.
[26] YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for Web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 974-983.
|