[1] |
LIM W K, DAVILA S, TEO J X, et al. Beyond fitness tracking: the use of consumer-grade wearable data from normal volunteers in cardiovascular and lipidomics research[J]. PLoS Biology, 2018, 16(2): e2004285.
DOI
URL
|
[2] |
STOJANOVIC N, DINIC M, STOJANOVIC L. A data-driven approach for multivariate contextualized anomaly detection: industry use case[C]// Proceedings of the 2017 IEEE Interna-tional Conference on Big Data, Boston, Dec 11-14, 2017. Washington: IEEE Computer Society, 2017: 1560-1569.
|
[3] |
CAMPOS G O, ZIMEK A, SANDER J, et al. on the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study[J]. Data Mining and Knowledge Discovery, 2016, 30(4): 891-927.
DOI
URL
|
[4] |
CANDÈS E J, LI X, MA Y, et al. Robust principal component analysis?[J]. Journal of the ACM, 2011, 58(3): 1-37.
|
[5] |
ZHOU C, PAFFENROTH R C. Anomaly detection with robust deep autoencoders[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 665-674.
|
[6] |
ZONG B, SONG Q, MIN M R, et al. Deep autoencoding Gaussian mixture model for unsupervised anomaly detection[C]// Proceedings of the 6th International Conference on Learning Representations, Vancouver, Apr 30-May 3, 2018.
|
[7] |
NALISNICK E, HERTEL L, SMYTH P. Approximate inference for deep latent Gaussian mixtures[C]// Proceedings of the 2016 NIPS Workshop on Bayesian Deep Learning. Red Hook: Curran Associates, 2016: 131.
|
[8] |
刘少钦, 唐爽, 赵俊峰, 等. 基于扩展主题模型的异常医疗处方检测方法[J]. 计算机科学与探索, 2020, 14(1): 30-39.
|
|
LIU S Q, TANG S, ZHAO J F, et al. Extended topic model based abnormal medical prescription detection method[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 30-39.
|
[9] |
AN J, CHO S. Variational autoencoder based anomaly detection using reconstruction probability[J]. Special Lecture on IE, 2015, 2(1): 1-18.
|
[10] |
REYNOLDS D A. Gaussian mixture models[J]. Encyclopedia of Biometrics, 2009, 741: 659-663.
|
[11] |
LEE H, PHAM P, LARGMAN Y, et al. Unsupervised feature learning for audio classification using convolutional deep belief networks[C]// Advances in Neural Information Processing Systems 22: 23rd Annual Coference on Neural Information Processing Systems 2009, Vancouver, Dec 7-10, 2009. Red Hook: Carran Associates, 2009: 1096-1104.
|
[12] |
CAMACHO J, PÉREZ-VILLEGAS A, GARCÍA-TEODORO P, et al. PCA-based multivariate statistical network monitoring for anomaly detection[J]. Computers & Security, 2016, 59: 118-137.
DOI
URL
|
[13] |
ZHAI S F, CHENG Y, LU W N, et al. Deep structured energy based models for anomaly detection[C]// Proceedings of the 33rd International Conference on Machine Learning, New York, Jun 19-24, 2016: 1100-1109.
|
[14] |
JANSSENS J H M, HUSZAR F, POSTMA E O, et al. Stochastic outlier selection: TiCC TR 2012-001[R]. Tilburg Center for Cognition and Communication, 2012.
|
[15] |
KINGMA D P, WELLING M. Auto-encoding variational Bayes[C]// Proceedings of the 2nd International Conference on Learning Representations, Banff, Apr 14-16, 2014: 1-14.
|
[16] |
VRIEZE S I. Model selection and psychological theory: a discussion of the differences between the Akaike information criterion (AIC) and the Bayesian information criterion (BIC)[J]. Psychological Methods, 2012, 17(2): 228.
DOI
URL
|