计算机科学与探索 ›› 2023, Vol. 17 ›› Issue (11): 2605-2619.DOI: 10.3778/j.issn.1673-9418.2304063
毕阳阳,郑远帆,史彩娟,张昆,刘健
出版日期:
2023-11-01
发布日期:
2023-11-01
BI Yangyang, ZHENG Yuanfan, SHI Caijuan, ZHANG Kun, LIU Jian
Online:
2023-11-01
Published:
2023-11-01
摘要: 随着深度学习与图像分割的不断发展,图像全景分割已经成为计算机视觉领域的一个研究热点,许多图像全景分割方法被提出。综述了基于深度学习的图像全景分割研究方法,首先介绍了图像全景分割国内外的研究现状,对已有图像全景分割的方法,根据网络架构优化任务的不同进行分类阐述,主要包括特征提取优化的图像全景分割、子任务分割优化的图像全景分割、子任务融合优化的图像全景分割、其他图像全景分割;其次简单介绍图像全景分割中常用的MS COCO、PASCAL VOC、Cityscapes、ADE20K和Mapillary Vistas五个数据集以及全景质量(PQ)和解析覆盖(PC)两种评价准则;然后对典型图像全景分割方法在不同数据集上进行了性能比较;接着列举了图像全景分割在医学、自动驾驶、无人机、农业、畜牧业、军事等领域的应用;最后指出了现有方法在复杂场景应用、实时性、冲突等方面存在的不足与挑战,并探讨了基于简单统一框架的图像全景分割、实时的高质量图像全景分割、复杂应用场景下图像全景分割等未来研究方向。
毕阳阳, 郑远帆, 史彩娟, 张昆, 刘健. 基于深度学习的图像全景分割综述[J]. 计算机科学与探索, 2023, 17(11): 2605-2619.
BI Yangyang, ZHENG Yuanfan, SHI Caijuan, ZHANG Kun, LIU Jian. Survey on Image Panoptic Segmentation Based on Deep Learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(11): 2605-2619.
[1] FORSYTH D A, MALIK J, FLECK M M, et al. Finding pictures of objects in large collections of images[C]//LNCS 1144: Proceedings of the 1996 International Workshop on Object Representation in Computer Vision. Berlin, Heidelberg: Springer, 1996: 335-360. [2] MINAEE S, BOYKOV Y, PORIKLI F, et al. Image segmen-tation using deep learning: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(7): 3523-3542. [3] LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 3431-3440. [4] 史彩娟, 陈厚儒, 张卫明, 等. 图像实例分割综述[C]//中国高科技产业化研究会智能信息处理产业化分会. 第十四届全国信号和智能信息处理与应用学术会议论文集, 北京, 2021. SHI C J, CHEN H R, ZHANG W M, et al. Survey on image instance segmentation[C]//Intelligent Information Processing Industrialization Branch of China High Tech Industrialization Research Association. Proceedings of the 14th National Conference on Signal and Intelligent Information Processing and Application, Beijing, 2021. [5] KIRILLOV A, HE K, GIRSHICK R, et al. Panoptic seg-mentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 9404-9413. [6] ZHAO Z Q, ZHENG P, XU S, et al. Object detection with deep learning: a review[J]. IEEE Transactions on Neural Networks and Learning Systems, 2019, 30(11): 3212-3232. [7] DVORNIK N, SHMELKOV K, MAIRAL J, et al. BlitzNet: a real-time deep network for scene understanding[C]//Pro-ceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 4174-4182. [8] KIRILLOV A, GIRSHICK R, HE K, et al. Panoptic feature pyramid networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 6399-6408. [9] LIN T Y, DOLLáR P, GIRSHICK R, et al. Feature pyramid networks for object detection[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jun 21-26, 2017. Washington: IEEE Computer Society, 2017: 936-944. [10] HE K, GKIOXARI G, DOLLáR P, et al. Mask R-CNN[C]//Proceedings of the 2017 IEEE International Conference on Computer vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2961-2969. [11] LI Q, ARNAB A, TORR P H S. Weakly-and semi-supervised panoptic segmentation[C]//LNCS 11219: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 106-124. [12] DE GEUS D, MELETIS P, DUBBELMAN G. Panoptic seg-mentation with a joint semantic and instance segmentation network[J]. arXiv:1809.02110, 2018. [13] LI J, RAVENTOS A, BHARGAVA A, et al. Learning to fuse things and stuff[J]. arXiv:1812.01192, 2018. [14] LI Y, CHEN X, ZHU Z, et al. Attention-guided unified network for panoptic segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 7026-7035. [15] XIONG Y, LIAO R, ZHAO H, et al. UPSNet: a unified panoptic segmentation network[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 8818-8826. [16] YANG T J, COLLINS M D, ZHU Y, et al. DeeperLab: single-shot image parser[J]. arXiv:1902.05093, 2019. [17] LIU H, PENG C, YU C, et al. An end-to-end network for panoptic segmentation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 6172-6181. [18] DE GEUS D, MELETIS P, DUBBELMAN G. Fast panoptic segmentation network[J]. IEEE Robotics and Automation Letters, 2020, 5(2): 1742-1749. [19] YANG Y, LI H, LI X, et al. SOGNet: scene overlap graph network for panoptic segmentation[C]//Proceedings of the 34th AAAI Conference on Artificial Intelligence, the 32nd Innovative Applications of Artificial Intelligence Conference, the 10th AAAI Symposium on Educational Advances in Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12637-12644. [20] CHENG B, COLLINS M D, ZHU Y, et al. Panoptic-DeepLab: a simple, strong, and fast baseline for bottom-up panoptic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recogni-tion, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 12472-12482. [21] BONDE U, ALCANTARILLA P F, LEUTENEGGER S. Towards bounding-box free panoptic segmentation[C]//LNCS 12544: Proceedings of the 42nd DAGM German Conference on Pattern Recognition, Tübingen, Sep 28-Oct 1, 2020. Cham: Springer, 2021: 316-330. [22] WANG H, ZHU Y, GREEN B, et al. Axial-DeepLab: stand-alone axial-attention for panoptic segmentation[C]//LNCS 12349: Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 108-126. [23] CHEN Y, LIN G, LI S, et al. BANet: bidirectional aggre-gation network with occlusion handling for panoptic seg-mentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 3792-3801. [24] MOHAN R, VALADA A. EfficientPS: efficient panoptic segmentation[J]. International Journal of Computer Vision, 2021, 129(5): 1551-1579. [25] WU Y, ZHANG G, GAO Y, et al. Bidirectional graph reasoning network for panoptic segmentation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 9077-9086. [26] HONG W, GUO Q, ZHANG W, et al. LPSNet: a lightweight solution for fast panoptic segmentation[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 16746-16754. [27] LI Y, ZHAO H, QI X, et al. Fully convolutional networks for panoptic segmentation[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 214-223. [28] WANG H, ZHU Y, ADAM H, et al. MaX-DeepLab: end-to-end panoptic segmentation with mask transformers[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 5463-5474. [29] HWANG S, OH S W, KIM S J. Single-shot path integrated panoptic segmentation[C]//Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Jan 3-8, 2022. Piscataway: IEEE, 2022: 1939-1948. [30] PORZI L, BULO S R, KONTSCHIEDER P. Improving pano-ptic segmentation at all scales[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recogni-tion, Jun 19-25, 2021. Piscataway: IEEE, 2021: 7302-7311. [31] ZHANG G, GAO Y, XU H, et al. Ada-Segment: automated multi-loss adaptation for panoptic segmentation[C]//Proceedings of the 35th AAAI Conference on Artificial Intelligence, the 33rd Conference on Innovative Applications of Artificial Intelligence, the 11th Symposium on Educational Advances in Artificial Intelligence, Feb 2-9, 2021. Menlo Park: AAAI, 2021: 3333-3341. [32] HUANG J, GUAN D, XIAO A, et al. Cross-view regularization for domain adaptive panoptic segmentation[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 10133-10144. [33] DE GEUS D, MELETIS P, LU C, et al. Part-aware panoptic segmentation[C]//Proceedings of the 2021 IEEE Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 5485-5494. [34] LI Z, WANG W, XIE E, et al. Panoptic SegFormer: delving deeper into panoptic segmentation with transformers[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 1270-1279. [35] YU Q, WANG H, KIM D, et al. CMT-DeepLab: clustering mask transformers for panoptic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscat-away: IEEE, 2022: 2550-2560. [36] GAO N, HE F, JIA J, et al. PanopticDepth: a unified framework for depth-aware panoptic segmentation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 18-24, 2022. Piscataway: IEEE, 2022: 1622-1632. [37] LI X, XU S, YANG Y, et al. Panoptic-PartFormer: learning a unified model for panoptic part segmentation[C]//LNCS 13687: Proceedings of the 17th European Conference on Computer Vision, Tel Aviv, Oct 23-27, 2022. Cham: Springer, 2022: 729-747. [38] YU Q, WANG H, QIAO S, et al. k-means mask transformer[C]//LNCS 13689: Proceedings of the 17th European Confe-rence on Computer Vision, Tel Aviv, Oct 23-27, 2022. Cham: Springer, 2022: 288-307. [39] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409. 1556, 2014. [40] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. [41] HOWARD A G, ZHU M, CHEN B, et al. MobileNets: effi-cient convolutional neural networks for mobile vision appli-cations[J]. arXiv:1704.04861, 2017. [42] CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 40(4): 834-848. [43] GUO M H, XU T X, LIU J J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368. [44] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal networks[C]//?Advances?in?Neural?Information?Processing?Systems?28,Montreal, Dec?7-12,?2015: 91-99. [45] DAI J, HE K, SUN J. BoxSup: exploiting bounding boxes to supervise convolutional networks for semantic segmentation[C]//Proceedings of the 2015 IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Washington: IEEE Computer Society, 2015: 1635-1643. [46] SUN B, KUEN J, LIN Z, et al. PRN: panoptic refinement network[C]//Proceedings of the 2023 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Jan 2-7, 2023. Piscataway: IEEE, 2023: 3952-3962. [47] 金玲, 刘晓丽, 李鹏飞, 等. 遗传算法综述[J]. 科学中国人, 2015(27): 230. JIN L, LIU X L, LI P F, et al. Survey of genetic algorithms[J]. Scientific Chinese, 2015(27): 230. [48] 徐鹏斌, 瞿安国, 王坤峰, 等. 全景分割研究综述[J]. 自动化学报, 2021, 47(3): 549-568. XU P B, QU A G, WANG K F, et al. A survey of panoptic segmentation methods[J]. Acta Automatica Sinica, 2021, 47(3): 549-568. [49] ZHAO H, SHI J, QI X, et al. Pyramid scene parsing network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6230-6239. [50] HU J, HUANG L, REN T, et al. You only segment once: towards real-time panoptic segmentation[J]. arXiv:2303.14651, 2023. [51] CHANG S E, CHEN Y, YANG Y C, et al. SE-PSNet: silhouette-based enhancement feature for panoptic segmen-tation network[J]. Journal of Visual Communication and Image Representation, 2023, 90: 103736. [52] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems?30,?Long?Beach,?Dec?4-9,?2017: 5998-6008. [53] CHOWDHARY K R, CHOWDHARY K R. Natural language processing[J]. Fundamentals of Artificial Intelligence, 2020: 603-649. [54] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recog-nition at scale[J]. arXiv:2010.11929, 2020. [55] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//LNCS 12346: Procee-dings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 213-229. [56] XIE E, WANG W, YU Z, et al. SegFormer: simple and efficient design for semantic segmentation with transformers[C]//Advances?in?Neural?Information?Processing?Systems?34,?Dec?6-14,?2021: 12077-12090. [57] HAN K, WANG Y, CHEN H, et al. A survey on vision transformer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45(1): 87-110. [58] KHAN S, NASEER M, HAYAT M, et al. Transformers in vision: a survey[J]. ACM Computing Surveys, 2022, 54: 1-41. [59] LIU Z, LIN Y, CAO Y, et al. Swin transformer: hierarchical vision transformer using shifted windows[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 9992-10002. [60] 杨俊闯, 赵超. K-Means聚类算法研究综述[J]. 计算机工程与应用, 2019, 55(23): 7-14. YANG J C, ZHAO C. Survey on K-Means clustering algorithm[J]. Computer Engineering and Applications, 2019, 55(23): 7-14. [61] SHEN Y, SONG K, TAN X, et al. HuggingGPT: solving AI tasks with ChatGPT and its friends in huggingface[J]. arXiv:2303.17580, 2023. [62] ZHANG J, PU J, XUE J, et al. HiVeGPT: human-machine-augmented intelligent vehicles with generative pre-trained transformer[J]. IEEE Transactions on Intelligent Vehicles, 2023, 8(3): 2027-2033. [63] WANG X, ZHANG X, CAO Y, et al. SegGPT: segmenting everything in context[J]. arXiv:2304.03284, 2023. [64] LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context[C]//LNCS 8693: Proceedings of the 13th European Conference on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 740-755. [65] EVERINGHAM M, ESLAMI S M A, VAN GOOL L, et al. The Pascal visual object classes challenge: a retrospective[J]. International Journal of Computer Vision, 2015, 111: 98-136. [66] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 3213-3223. [67] ZHOU B, ZHAO H, PUIG X, et al. Scene parsing through ADE20K dataset[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 5122-5130. [68] NEUHOLD G, OLLMANN T, ROTA BULO S, et al. The Mapi-llary Vistas dataset for semantic understanding of street scenes[C]//Proceedings of the 2017 IEEE International Confe-rence on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 5000-5009. [69] ZHANG D, SONG Y, LIU D, et al. Panoptic segmentation with an end-to-end cell R-CNN for pathology image analysis[C]//LNCS 11071: Proceedings of the 21st International Conference on Medical Image Computing and Computer Assisted Intervention, Granada, Sep 16-20, 2018. Cham: Springer, 2018: 237-244. [70] YU X, LOU B, ZHANG D, et al. Deep attentive panoptic model for prostate cancer detection using biparametric MRI scans[C]//LNCS 12264: Proceedings of the 23rd International Conference on Medical Image Computing and Computer Assisted Intervention, Lima, Oct 4-8, 2020. Cham: Springer, 2020: 594-604. [71] CHA J Y, YOON H I, YEO I S, et al. Panoptic segmentation on panoramic radiographs: deep learning-based segmentation of various structures including maxillary sinus and mandibular canal[J]. Journal of Clinical Medicine, 2021, 10(12): 2577. [72] GINLEY B, LUCARELLI N, ZEE J, et al. Automated reference kidney histomorphometry using a panoptic segmentation neural network correlates to patient demographics and creatinine[C]//Proceedings of the Medical Imaging 2023: Digital and Computational Pathology, San Diego, Feb 19-24, 2023. San Francisco: SPIE, 2023: 458-462. [73] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Washington: IEEE Computer Society, 2014: 580-587. [74] PETROVAI A, NEDEVSCHI S. Real-time panoptic seg-mentation with prototype masks for automated driving[C]//Proceedings of the 2020 IEEE Intelligent Vehicles Symposium, Las Vegas, Oct 19-Nov 13, 2020. Piscataway: IEEE, 2020: 1400-1406. [75] CHEN H, DING L, YAO F, et al. Panoptic segmentation of UAV images with deformable convolution network and mask scoring[C]//Proceedings of the 12th International Conference on Graphics and Image Processing, Xi??an, Nov 13-15, 2020. San Francisco: SPIE, 2021: 312-321. [76] DAI J, QI H, XIONG Y, et al. Deformable convolutional networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 764-773. [77] SIDDIQUE A, TABB A, MEDEIROS H. Self-supervised learning for panoptic segmentation of multiple fruit flower species[J]. IEEE Robotics and Automation Letters, 2022, 7(4): 12387-12394. [78] BRüNGER J, GENTZ M, TRAULSEN I, et al. Panoptic instance segmentation on pigs[J]. arXiv:2005.10499, 2020. [79] SON J, LEE S. Hidden enemy visualization using fast panoptic segmentation on battlefields[C]//Proceedings of the 2021 IEEE International Conference on Big Data and Smart Com-puting, Jeju Island, Jan 17-20, 2021. Piscataway: IEEE, 2021: 291-294. [80] BOLYA D, ZHOU C, XIAO F, et al. YOLACT: real-time instance segmentation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9156-9165. |
[1] | 赵婷婷, 孙威, 陈亚瑞, 王嫄, 杨巨成. 潜在空间中深度强化学习方法研究综述[J]. 计算机科学与探索, 2023, 17(9): 2047-2074. |
[2] | 刘华玲, 陈尚辉, 曹世杰, 朱建亮, 任青青. 基于多模态学习的虚假新闻检测研究[J]. 计算机科学与探索, 2023, 17(9): 2015-2029. |
[3] | 王海勇, 潘海涛, 刘贵楠. 融合注意力机制和课程式学习的人脸识别方法[J]. 计算机科学与探索, 2023, 17(8): 1893-1903. |
[4] | 徐光宪, 冯春, 马飞. 基于UNet的医学图像分割综述[J]. 计算机科学与探索, 2023, 17(8): 1776-1792. |
[5] | 季长清, 王兵兵, 秦静, 汪祖民. 深度特征的实例图像检索算法综述[J]. 计算机科学与探索, 2023, 17(7): 1565-1575. |
[6] | 吴水秀, 罗贤增, 熊键, 钟茂生, 王明文. 知识追踪研究综述[J]. 计算机科学与探索, 2023, 17(7): 1506-1525. |
[7] | 马妍, 古丽米拉·克孜尔别克. 图像语义分割方法在高分辨率遥感影像解译中的研究综述[J]. 计算机科学与探索, 2023, 17(7): 1526-1548. |
[8] | 刘卫光, 刘东, 王璐. 可变形卷积网络研究综述[J]. 计算机科学与探索, 2023, 17(7): 1549-1564. |
[9] | 张如琳, 王海龙, 柳林, 裴冬梅. 音乐自动标注分类方法研究综述[J]. 计算机科学与探索, 2023, 17(6): 1225-1248. |
[10] | 梁宏涛, 刘硕, 杜军威, 胡强, 于旭. 深度学习应用于时序预测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1285-1300. |
[11] | 杨艳艳, 李雷孝, 林浩. 提取驾驶员面部特征的疲劳驾驶检测研究综述[J]. 计算机科学与探索, 2023, 17(6): 1249-1267. |
[12] | 刘京, 赵薇, 董泽浩, 王少华, 王余. 融合多尺度自注意力机制的运动想象信号解析[J]. 计算机科学与探索, 2023, 17(6): 1427-1440. |
[13] | 蒋凌云, 杨金龙. 检测优化的标签多伯努利视频多目标跟踪算法[J]. 计算机科学与探索, 2023, 17(6): 1343-1358. |
[14] | 曹义亲, 饶哲初, 朱志亮, 万穗. 双通道四元数卷积网络去噪方法[J]. 计算机科学与探索, 2023, 17(6): 1359-1372. |
[15] | 曹斯铭, 王晓华, 王弘堃, 曹轶. MSV-Net:面向科学模拟面体混合数据的超分重建方法[J]. 计算机科学与探索, 2023, 17(6): 1321-1328. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||