[1] 冯文博, 洪征, 吴礼发, 等. 网络协议识别技术综述[J]. 计算机应用, 2019, 39(12): 3604-3614.
FENG W B, HONG Z, WU L F, et al. Review of network protocol recognition techniques[J]. Journal of Computer Applications, 2019, 39(12): 3604-3614.
[2] XU W, ZOU F. Obfuscated Tor traffic identification based on sliding window[J]. Security and Communication Networks, 2021. DOI:10.1155/2021/5587837.
[3] NASIR M, JAVED A R, TARIQ M A, et al. Feature engineering and deep learning-based intrusion detection framework for securing edge IoT[J]. The Journal of Supercomputing, 2022, 78: 8852-8866.
[4] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 770-778.
[5] NIU Z, ZHONG G, YU H. A review on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62.
[6] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 7132-7141.
[7] REN F, JIANG Z, LIU J. A bi-directional LSTM model with attention for malicious URL detection[C]//Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference, Chengdu, 2019. Piscataway: IEEE, 2019: 300-305.
[8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[9] FENG W, HONG Z, WU L, et al. Network protocol recognition based on convolutional neural network[J]. China Communications, 2020, 17(4): 125-139.
[10] WEI W, GU H, DENG W, et al. ABL-TC: a lightweight design for network traffic classification empowered by deep learning[J]. Neurocomputing, 2022, 489: 333-344.
[11] 吴吉胜, 洪征, 马甜甜, 等. 基于残差网络和循环神经网络混合模型的应用层协议识别方法[J]. 计算机科学, 2022, 49(11): 293-301.
WU J S, HONG Z, MA T T, et al. Application layer protocol recognition based on residual network and recurrent neural network[J]. Computer Science, 2020, 49(11): 293-301.
[12] SARHANGIAN F, KASHEF R, JASEEMUDDIN M. Efficient traffic classification using hybrid deep learning[C]//Proceedings of the 2021 IEEE International Systems Conference, Vancouver, 2021. Piscataway: IEEE, 2021: 1-8.
[13] 彭瑶. 基于深度学习的加密流量分类方法研究[D]. 广州: 广州大学, 2022.
PENG Y. Research on encrypted traffic classification method based on deep learning[D]. Guangzhou: Guangzhou University, 2022.
[14] HE K, ZHANG X, REN S, et al. Identity mappings in deep residual networks[C]//Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 630-645.
[15] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16x16 words: Transformers for image recognition at scale[J]. arXiv:2010.11929, 2020.
[16] GHANEM W A H M, GHALEB S A A, JANTAN A, et al. Cyber intrusion detection system based on a multiobjective binary bat algorithm for feature selection and enhanced bat algorithm for parameter optimization in neural networks[J]. IEEE Access, 2022, 10: 76318-76339.
[17] LIU L, ENGELEN G, LYNAR T, et al. Error prevalence in NIDS datasets: a case study on CIC-IDS-2017 and CSE-CIC-IDS-2018[C]//Proceedings of the 2022 IEEE Conference on Communications and Network Security, Austin, Oct 3-5, 2022. Piscataway: IEEE, 2022: 254-262.
[18] DE S, GOLDSTEIN T. Efficient distributed SGD with variance reduction[C]//Proceedings of the 2016 IEEE 16th International Conference on Data Mining, Barcelona, Dec 12-15, 2016. Piscataway: IEEE, 2016: 111-120. |