[1] ZHAO J, XIE X, XU X, et al. Multi-view learning overview: recent progress and new challenges[J]. Information Fusion, 2017, 38: 43-54.
[2] HUANG S, XU Z, TSANG I W, et al. Auto-weighted multi-view co-clustering with bipartite graphs[J]. Information Sciences, 2020, 512: 18-30.
[3] WANG S, LIU X, LIU L, et al. Late fusion multiple kernel clustering with proxy graph refinement[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(8): 4359-4370.
[4] CHEN M S, HUANG L, WANG C D, et al. Relaxed multi-view clustering in latent embedding space[J]. Information Fusion, 2021, 68(9): 8-21.
[5] ZHANG H, WU D, NIE F, et al. Multilevel projections with adaptive neighbor graph for unsupervised multi-view feature selection[J]. Information Fusion, 2021, 70: 129-140.
[6] YANG W, WANG Y, TANG C, et al. One step multi-view spectral clustering via joint adaptive graph learning and matrix factorization[J]. Neurocomputing, 2023, 524: 95-105.
[7] WANG H, YANG Y, LIU B, et al. A study of graph-based system for multi-view clustering[J]. Knowledge-Based Systems, 2019, 163: 1009-1019.
[8] HU Z X, NIE F P , WANG R, et al. Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding[J]. Information Fusion, 2020, 55: 251-259.
[9] YU X, LIU H, LIN Y, et al. Sample-level weights learning for multi-view clustering on spectral rotation[J]. Information Sciences, 2023, 619: 38-51.
[10] YANG B, WU J, ZHANG X, et al. Robust anchor-based multi-view clustering via spectral embedded concept factorization[J]. Neurocomputing, 2023, 528: 136-147.
[11] ZHAO M, YANG W, NIE F. Auto-weighted orthogonal and nonnegative graph reconstruction for multi-view clustering [J]. Information Sciences, 2023, 632: 324-339.
[12] NIE F, WANG X, JORDAN M I, et al. The constrained Lapla-cian rank algorithm for graph-based clustering[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence.Menlo Park: AAAI, 2016: 1969-1976.
[13] NIE F, LI J, LI X. Self-weighted multiview clustering with multiple graphs[C]//Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Aug 19-25, 2017: 2564-2570.
[14] HUANG S, TSANG I W, XU Z, et al. Measuring diversity in graph learning: a unified framework for structured multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(12): 5869-5883.
[15] CHAN P K, SCHLAG F. Spectral K-way ratio-cut partitioning and clustering[J]. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 1994, 13(9): 1088-1096.
[16] HUANG J, NIE F, HUANG H. A new simplex sparse learning model to measure data similarity for clustering[C]//Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015: 3569-3575.
[17] LIU S, WANG S, ZHANG P, et al. Efficient one-pass multi-view subspace clustering with consensus anchors[C]//Proceedings of the 2022 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022: 7576-7584.
[18] ZHANG P, LIU X, XIONG J, et al. Consensus one-step multi-view subspace clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(10): 4676-4689.
[19] KANG Z, SHI G, HUANG S, et al. Multi-graph fusion for multi-view spectral clustering[J]. Knowledge-Based Systems, 2020, 189: 105102.
[20] YANG B, ZHANG X, LI Z, et al. Efficient multi-view K-means clustering with multiple anchor graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(7): 6887-6900. |