[1] 胡长军, 许文文, 胡颖, 等. 在线社交网络信息传播研究综述[J]. 电子与信息学报, 2017, 39(4): 794-804.
HU C J, XU W W, HU Y, et al. Review of information diffusion in online social networks[J]. Journal of Electronics & Information Technology, 2017, 39(4): 794-804.
[2] WU L, WANG H, CHEN E, et al. Preference enhanced social influence modeling for network-aware cascade prediction[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, Madrid, Jul 11-15, 2022. New York: ACM, 2022: 2704-2708.
[3] ZHANG P, RAN H, JIA C, et al. A lightweight propagation path aggregating network with neural topic model for rumor detection[J]. Neurocomputing, 2021, 458: 468-477.
[4] LESKOVEC J. Social media analytics: tracking, modeling and predicting the flow of information through networks[C]//Proceedings of the 20th International Conference Companion on World Wide Web, Hyderabad, Mar 28-Apr 1, 2011. New York: ACM, 2011: 277-278.
[5] ZHOU F, XU X, TRAJCEVSKI G, et al. A survey of information cascade analysis: models, predictions, and recent advances[J]. ACM Computing Surveys, 2021, 54(2): 1-36.
[6] ISLAM M R, MUTHIAH S, ADHIKARI B, et al. DeepDiffuse: predicting the ‘who’ and ‘when’ in cascades[C]//Proceedings of the 2018 IEEE International Conference on Data Mining, Singapore, Nov 17-20, 2018. Piscataway: IEEE, 2018: 1055-1060.
[7] GRAVES A. Long short-term memory[M]//Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer, 2012: 37-45.
[8] YANG C, WANG H, TANG J, et al. Full-scale information diffusion prediction with reinforced recurrent networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(5): 2271-2283.
[9] SANKAR A, ZHANG X, KRISHNAN A, et al. Inf-VAE: a variational autoencoder framework to integrate homophily and influence in diffusion prediction[C]//Proceedings of the 13th International Conference on Web Search and Data Mining. New York: ACM, 2020: 510-518.
[10] MCPHERSON M, SMITH-LOVIN L, COOK J M. Birds of a feather: homophily in social networks[J]. Annual Review of Sociology, 2001, 27(1): 415-444.
[11] YUAN C, LI J, ZHOU W, et al. DyHGCN: a dynamic heterogeneous graph convolutional network to learn users’ dynamic preferences for information diffusion prediction[C]//Proceedings of the 2020 European Conference on Machine Learning and Knowledge Discovery in Databases, Ghent, Sep 14-18, 2020. Cham: Springer, 2021: 347-363.
[12] WOO J, CHEN H. An event-driven SIR model for topic diffusion in web forums[C]//Proceedings of the 2012 IEEE International Conference on Intelligence and Security Informatics, Washington, Jun 11-14, 2012. Piscataway: IEEE, 2012: 108-113.
[13] GOLDENBERG J, LIBAI B, MULLER E J M L. Talk of the network: a complex systems look at the underlying process of word-of-mouth[J]. Marketing Letters, 2001, 12: 211-223.
[14] SHEN H, WANG D, SONG C, et al. Modeling and predicting popularity dynamics via reinforced poisson processes [C]//Proceedings of the 2014 AAAI Conference on Artificial Intelligence, Québec, Jul 27-31, 2014. Palo Alto: AAAI Press, 2014: 291-287.
[15] LU X, YU Z, GUO B, et al. Predicting the content dissemination trends by repost behavior modeling in mobile social networks[J]. Journal of Network and Computer Applications, 2014, 42: 197-207.
[16] YANG Z, GUO J, CAI K, et al. Understanding retweeting behaviors in social networks[C]//Proceedings of the 19th ACM International Conference on Information and Knowledge Management, Toronto, Oct 26-30, 2010. New York: ACM, 2010: 1633-1636.
[17] SHULMAN B, SHARMA A, COSLEY D. Predictability of popularity: gaps between prediction and understanding[C]//Proceedings of the 2016 International AAAI Conference on Web and Social Media, Cologne, May 17-20, 2016. Palo Alto: AAAI Press, 2016: 348-357.
[18] WANG R, HUANG Z, LIU S, et al. DyDiff-VAE: a dynamic variational framework for information diffusion prediction [C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Jul 11-15, 2021. New York: ACM, 2021: 163-172.
[19] CHEN X, ZHANG F, ZHOU F, et al. Multi-scale graph capsule with influence attention for information cascades prediction[J]. International Journal of Intelligent Systems, 2022, 37(3): 2584-2611.
[20] MOLAEI S, ZARE H, VEISI H. Deep learning approach on information diffusion in heterogeneous networks[J]. Knowledge-Based Systems, 2020, 189: 1-13.
[21] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[22] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2023-06-16].https://arxiv.org/abs/1609.02907.
[23] HAMILTON W, YING Z, LESKOVEC J. Inductive representation learning on large graphs[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 1024-1034.
[24] HODAS N O, LERMAN K. The simple rules of social contagion[J]. Scientific Reports, 2014, 4(1): 1-12.
[25] LESKOVEC J, BACKSTROM L, KLEINBERG J. Meme-tracking and the dynamics of the news cycle[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Paris, Jun 28-Jul 1, 2009. New York: ACM, 2009: 497-506.
[26] WANG J, ZHENG V W, LIU Z, et al. Topological recurrent neural network for diffusion prediction[C]//Proceedings of the 2017 IEEE International Conference on Data Mining,New Orleans, Nov 18-21, 2017. Piscataway: IEEE, 2017: 475-484.
[27] YANG C, SUN M, LIU H, et al. Neural diffusion model for microscopic cascade study[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 33(3): 1128-1139. |