[1] 范苍宁, 刘鹏, 肖婷, 等. 深度域适应综述: 一般情况与复杂情况[J]. 自动化学报, 2021, 47(3): 515-548.
FAN C N, LIU P, XIAO T, et al. A review of deep domain adaptation: general situation and complex situation[J]. Acta Automatica Sinica, 2021, 47(3): 515-548.
[2] MARTINEZ J, HOSSAIN R, ROMERO J, et al. A simple yet effective baseline for 3D human pose estimation[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2640-2649.
[3] ZHOU X, HUANG Q, SUN X, et al. Towards 3D human pose estimation in the wild: a weakly-supervised approach[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 398-407.
[4] PAVLAKOS G, ZHOU X, DERPANIS K G, et al. Coarse-to-fine volumetric prediction for single-image 3D human pose[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 7025-7034.
[5] WANG J, TAN S, ZHEN X, et al. Deep 3D human pose esti-mation: a review[J]. Computer Vision and Image Understanding, 2021, 210: 103225.
[6] 王仕宸, 黄凯, 陈志刚, 等. 深度学习的三维人体姿态估计综述[J]. 计算机科学与探索, 2023, 17(1): 74-87.
WANG S C, HUANG K, CHEN Z G, et al. Survey on 3D human pose estimation of deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 74-87.
[7] SIGAL L, BALAN A O, BLACK M J. Humaneva: synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion[J]. International Journal of Computer Vision, 2010, 87: 4.
[8] XIE F, SHEN H, YU Y, et al. Detection of weak small image target based on brain-computer interface[C]//Proceedings of the 2021 IEEE 4th International Conference on Electronics Technology, Chengdu, May 7-10, 2021. Piscataway: IEEE, 2021: 1218-1222.
[9] SONG Y F, ZHANG Z, SHAN C, et al. Constructing stronger and faster baselines for skeleton-based action recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 45: 1474-1488.
[10] 龚苏明, 陈莹. 时空特征金字塔模块下的视频行为识别[J]. 计算机科学与探索, 2022, 16(9): 2061-2067.
GONG S M, CHEN Y. Video action recognition based on spatio-temporal feature pyramid module[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2061-2067.
[11] SPURR A, DAHIYA A, WANG X, et al. Self-supervised 3D hand pose estimation from monocular RGB via contrastive learning[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Mar 10, 2021. Piscataway: IEEE, 2021: 11230-11239.
[12] CHEN C H, TYAGI A, AGRAWAL A, et al. Unsupervised 3D pose estimation with geometric self-supervision[C]//Pro-ceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 5714-5724.
[13] RHODIN H, SALZMANN M, FUA P. Unsupervised geometry-aware representation for 3D human pose estimation[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 750-767.
[14] CAO J, TANG H, FANG H S, et al. Cross-domain adaptation for animal pose estimation[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 9498-9507.
[15] KUNDU J N, SETH S, YM P, et al. Uncertainty-aware adaptation for self-supervised 3D human pose estimation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscateway: IEEE, 2022: 20448-20459.
[16] LIN K, WANG L, LIU Z. Mesh graphormer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 12939-12948.
[17] LUO C, CHU X, YUILLE A. Orinet: a fully convolutional network for 3D human pose estimation[EB/OL]. [2023-05-23]. https://arxiv.org/abs/1811.04989.
[18] MEHTA D, SOTNYCHENKO O, MUELLER F, et al. Single-shot multi-person 3D pose estimation from monocular RGB[C]//Proceedings of the 2018 International Conference on 3D Vision, Verona, Sep 5-8, 2018. Piscataway: IEEE, 2018: 120-130.
[19] LIU R, SHEN J, WANG H, et al. Attention mechanism exploits temporal contexts: real-time 3D human pose reconstruction[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 5064-5073.
[20] WANG J, YAN S, XIONG Y, et al. Motion guided 3D pose estimation from videos[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 764-780.
[21] KOCABAS M, ATHANASIOU N, BLACK M J. Vibe: video inference for human body pose and shape estimation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Pis-cataway: IEEE, 2020: 5253-5263.
[22] ZHANG J, NIE X, FENG J. Inference stage optimization for cross-scenario 3D human pose estimation[C]//Advances in Neural Information Processing Systems 33, Dec 6-12, 2020: 2408-2419.
[23] WANG Z, SHIN D, FOWLKES C C. Predicting camera viewpoint improves cross-dataset generalization for 3D human pose estimation[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 523-540.
[24] GUAN S, XU J, WANG Y, et al. Bilevel online adaptation for out-of-domain human mesh reconstruction[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 10472-10481.
[25] ZENG A, SUN X, HUANG F, et al. SRNet: improving generalization in 3D human pose estimation with a split-and-recombine approach[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 507-523.
[26] ZHENG C, ZHU S, MENDIETA M, et al. 3D human pose estimation with spatial and temporal transformers[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Montreal, Oct 10-17, 2021. Piscataway: IEEE, 2021: 11656-11665.
[27] ZHANG J, TU Z, YANG J, et al. MixSTE: Seq2seq mixed spatio-temporal encoder for 3D human pose estimation in video[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscateway: IEEE, 2022: 13232-13242.
[28] GONG K, ZHANG J, FENG J. Poseaug: a differentiable pose augmentation framework for 3D human pose estimation[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 8575-8584.
[29] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63: 139-144.
[30] GHOLAMI M, WANDT B, RHODIN H, et al. AdaptPose: cross-dataset adaptation for 3D human pose estimation by learnable motion generation[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 19-24, 2022. Piscateway: IEEE, 2022:13075-13085.
[31] PAVLLO D, FEICHTENHOFER C, GRANGIER D, et al. 3D human pose estimation in video with temporal convolutions and semi-supervised training[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 7753-7762.
[32] LI W, LIU H, DING R, et al. Exploiting temporal contexts with strided transformer for 3D human pose estimation[J]. IEEE Transactions on Multimedia, 2023, 25: 1282-1293.
[33] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[34] MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 2794-2802.
[35] IONESCU C, PAPAVA D, OLARU V, et al. Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 36: 1325-1339.
[36] MEHTA D, RHODIN H, CASAS D, et al. Monocular 3D human pose estimation in the wild using improved CNN supervision[C]//Proceedings of the 2017 International Conference on 3D Vision, Qingdao, Oct 10-12, 2017. Piscataway: IEEE, 2017:506-516.
[37] VON MARCARD T, HENSCHEL R, BLACK M J, et al. Recovering accurate 3D human pose in the wild using IMUs and a moving camera[C]//Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 601-617.
[38] LI S, KE L, PRATAMA K, et al. Cascaded deep monocular 3D human pose estimation with evolutionary training data[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 14-19, 2020. Piscataway: IEEE, 2020: 6173-6183.
[39] MEHTA D, SRIDHAR S, SOTNYCHENKO O, et al. VNect: real-time 3D human pose estimation with a single RGB camera[J]. ACM Transactions on Graphics, 2017, 36: 1-14.
[40] CHAI W, JIANG Z, HWANG J N, et al. Global adaptation meets local generalization: unsupervised domain adaptation for 3D human pose estimation[EB/OL]. [2023-05-23]. https://arxiv.org/abs/2303.16456.
[41] JOO H, NEVEROVA N, VEDALDI A. Exemplar fine-tuning for 3D human model fitting towards in-the-wild 3D human pose estimation[C]//Proceedings of the 2021 International Conference on 3D Vision, Dec 1-3, 2021. Piscataway: IEEE, 2021: 42-52.
[42] DOERSCH C, ZISSERMAN A. Sim2real transfer learning for 3D human pose estimation: motion to the rescue[C]//Advances in Neural Information Processing Systems 32, Vancouver,Dec 8-14, 2019: 12929-12941.
[43] KOLOTOUROS N, PAVLAKOS G, BLACK M J, et al. Learning to reconstruct 3D human pose and shape via model-fitting in the loop[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 2252-2261. |