[1] DONG C, LOY C C, HE K M, et al. Learning a deep convolutional network for image super-resolution[C]//Proceedings of the 13th European Conference on Computer Vision. Cham: Springer, 2014: 184-199.
[2] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654.
[3] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 770-778.
[4] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1132-1140.
[5] ZHANG Y L, LI K P, LI K, et al. Image super-resolution using very deep residual channel attention networks[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 294-310.
[6] LIANG J Y, CAO J Z, SUN G L, et al. SwinIR: image restoration using swin transformer[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 1833-1844.
[7] ZHOU X, HUANG H, HE R, et al. MSRA-SR: image super- resolution transformer with multi-scale shared representation acquisition[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 12665-12676.
[8] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008.
[9] GU J J, LU H N, ZUO W M, et al. Blind super-resolution with iterative kernel correction[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 1604-1613.
[10] ZHANG K, ZUO W M, ZHANG L. Learning a single convolutional super-resolution network for multiple degradations[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 3262-3271.
[11] XU Y S, TSENG S R, TSENG Y, et al. Unified dynamic convolutional network for super-resolution with variational degradations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 12496-12505.
[12] LEE R, LI R, VENIERIS S, et al. Meta-learned kernel for blind super-resolution kernel estimation[C]//Proceedings of the 2024 IEEE/CVF Winter Conference on Applications of Computer Vision. Piscataway: IEEE, 2024: 1485-1494.
[13] LUO Z X, HUANG Y, LI S, et al. Unfolding the alternating optimization for blind super resolution[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 5632-5643.
[14] WANG L G, WANG Y Q, DONG X Y, et al. Unsupervised degradation representation learning for blind super-resolution[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2021: 10581-10590.
[15] ZHANG Y F, DONG L, YANG H, et al. Weakly-supervised contrastive learning-based implicit degradation modeling for blind image super-resolution[J]. Knowledge-Based Systems, 2022, 249: 108984.
[16] WANG Y, MING J W, JIA X, et al. Blind image super-resolution with degradation-aware adaptation[C]//Proceedings of the 2022 Asian Conference on Computer Vision. Cham: Springer, 2022: 69-85.
[17] ZHANG Y, LIU Z Y, LIU S D, et al. Frequency aggregation network for blind super-resolution based on degradation representation[J]. Digital Signal Processing, 2023, 133: 103837.
[18] YANG Y Y, LIU Z H, OU W H, et al. Blind super-resolution model based on unsupervised degenerate indication learning[J]. Computers and Electrical Engineering, 2023, 111: 108958.
[19] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605.
[20] CHEN X L, FAN H Q, GIRSHICK R, et al. Improved baselines with momentum contrastive learning[EB/OL]. [2024-01-15]. https://arxiv.org/abs/2003.04297.
[21] GRILL J B, STRUB F, ALTCHé F, et al. Bootstrap your own latent a new approach to self-supervised learning[C]//Proceedings of the 34th International Conference on Neural Information Processing Systems, 2020: 21271-21284.
[22] SHI W Z, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883.
[23] ZHANG W L, SHI G Y, LIU Y H, et al. A closer look at blind super-resolution: degradation models, baselines, and performance upper bounds[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 526-535.
[24] CI Y Z, LIN C, BAI L, et al. Fast-MoCo: boost momentum-based contrastive learning with combinatorial patches[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 290-306.
[25] HENDRYCKS D, GIMPEL K. Gaussian error linear units (GELUs)[EB/OL]. [2024-01-15]. https://arxiv.org/abs/1606. 08415.
[26] LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 11966-11976.
[27] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1122-1131.
[28] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1122-1131.
[29] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 2012 British Machine Vision Conference, 2012: 1-10.
[30] ZEYDE R, ELAD M, PROTTER M. On single image scale-up using sparse-representations[C]//Proceedings of the 7th International Conference on Curves and Surfaces. Berlin, Heidelberg: Springer, 2012: 711-730.
[31] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001: 416-423.
[32] HUANG J B, SINGH A, AHUJA N. Single image super-resolution from transformed self-exemplars[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2015: 5197-5206.
[33] ZHANG K, LIANG J Y, VAN GOOL L, et al. Designing a practical degradation model for deep blind image super-resolution[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 4771-4780.
[34] KIM S Y, SIM H, KIM M. KOALAnet: blind super-resolution using kernel-oriented adaptive local adjustment[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 10611-10620.
[35] LIANG J, ZENG H, ZHANG L. Efficient and degradation-adaptive network for real-world image super-resolution[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 574-591. |