[1] ZHOU D W, DUAN R, ZHAO L J, et al. Single image super-resolution reconstruction based on multi-scale feature mapping adversarial network[J]. Signal Processing, 2020, 166: 107251.
[2] SONG Z Y, ZHAO X Q, JIANG H M. Gradual deep residual network for super-resolution[J]. Multimedia Tools and Applications, 2021, 80(7): 9765-9778.
[3] LU Z Y, CHEN Y. Joint self-supervised depth and optical flow estimation towards dynamic objects[J]. Neural Processing Letters, 2023, 55(8): 10235-10249.
[4] SHANG W L, SOHN K, ALMEID D, et al. Understanding and improving convolutional neural networks via concatenated rectified linear units[C]//Proceedings of the 33rd Inter-national Conference on Machine Learning, 2016: 2217-2225.
[5] LU Z Y, CHEN Y. Pyramid frequency network with spatial attention residual refinement module for monocular depth estimation[J]. Journal of Electronic Imaging, 2022, 31(2): 023005.
[6] LU Z Y, WANG F. City scene super-resolution via geometric error minimization[J]. Journal of Electronic Imaging, 2024, 33(1): 013014.
[7] HAN K, WANG Y H, TIAN Q, et al. GhostNet: more features from cheap operations[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 1577-1586.
[8] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[9] CANNY J. A computational approach to edge detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1986, 8(6): 679-698.
[10] DUDA R O, HART P E. Use of the Hough transformation to detect lines and curves in pictures[J]. Communications of the ACM, 1972, 15(1): 11-15.
[11] BEVILACQUA M, ROUMY A, GUILLEMOT C, et al. Low-complexity single-image super-resolution based on nonnegative neighbor embedding[C]//Proceedings of the 2012 British Machine Vision Conference, 2012.
[12] MARTIN D, FOWLKES C, TAL D, et al. A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological stati-stics[C]//Proceedings of the 8th IEEE International Conference on Computer Vision. Piscataway: IEEE, 2001: 416-423.
[13] CORDTS M, OMRAN M, RAMOS S, et al. The cityscapes dataset for semantic urban scene understanding[C]//Proceed-ings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 3213-3223.
[14] ALI-BEY A, CHAIB-DRAA B, GIGUèRE P. GSV-Cities: toward appropriate supervised visual place recognition[J]. Neurocomputing, 2022, 513: 194-203.
[15] AGUSTSSON E, TIMOFTE R. NTIRE 2017 challenge on single image super-resolution: dataset and study[C]//Proceed-ings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1122-1131.
[16] BOOR C D. Bicubic spline interpolation[J]. Journal of Math-ematics and Physics, 1962, 41: 212-218.
[17] KINGMA D P, BA J, HAMMAD M M. Adam: a method for stochastic optimization[EB/OL]. [2024-06-03]. https://arxiv.org/abs/1412.6980.
[18] HORé A, ZIOU D. Image quality metrics: PSNR vs. SSIM[C]//Proceedings of the 2010 20th International Conference on Pattern Recognition. Piscataway: IEEE, 2010: 2366-2369.
[19] SHI W Z, CABALLERO J, HUSZáR F, et al. Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1874-1883.
[20] DONG C, LOY C C, HE K M, et al. Image super-resolution using deep convolutional networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(2): 295-307.
[21] KIM J, LEE J K, LEE K M. Accurate image super-resolution using very deep convolutional networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1646-1654.
[22] LIM B, SON S, KIM H, et al. Enhanced deep residual networks for single image super-resolution[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 1132-1140.
[23] DONG C, LOY C C, TANG X O. Accelerating the super-resolution convolutional neural network[C]//Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 391-407.
[24] KIM J, LEE J K, LEE K M. Deeply-recursive convolutional network for image super-resolution[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 1637-1645.
[25] LEDIG C, THEIS L, HUSZAR F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2017: 105-114.
[26] HARIS M, SHAKHNAROVICH G, UKITA N. Deep back-projection networks for super-resolution[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1664-1673.
[27] LU Z Y, CHEN Y. Single image super-resolution based on a modified U-Net with mixed gradient loss[J]. Signal, Image and Video Processing, 2022, 16(5): 1143-1151. |