
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (11): 2855-2872.DOI: 10.3778/j.issn.1673-9418.2503034
张静,黄文锋,吴春江,谭浩
出版日期:2025-11-01
发布日期:2025-10-30
ZHANG Jing, HUANG Wenfeng, WU Chunjiang, TAN Hao
Online:2025-11-01
Published:2025-10-30
摘要: 随着知识图谱(KG)在智能问答、推荐系统等领域的广泛应用,其规模化构建与高效推理的技术瓶颈日益凸显。传统人工与半自动化构建模式成本高昂,实体歧义消解、关系抽取准确率不足等问题导致图谱质量难以保障;知识稀疏性与推理规则复杂性限制了图谱推理的泛化能力。大模型(LLM)凭借强大的语义理解与上下文建模能力,为突破这些瓶颈提供了新路径,但目前相关技术缺乏系统性梳理,不同方法的适用场景与性能边界尚不清晰,因此,对现有的大模型增强知识图谱构建和推理的方法开展系统性综述。介绍了知识图谱和大模型相关的基础理论。聚焦知识抽取、自动化构建、知识补全与推理四类核心任务,剖析现有方法:知识抽取中,对比基于大模型的零样本知识抽取与微调领域适配抽取;自动化构建方面,梳理大模型驱动的本体自动生成、图谱迭代更新技术;知识补全方面,总结了借助大模型生成伪三元组、提示规划上下文与结合外部检索机制的方法;推理任务中,分析了基于大模型的静态增强推理和主动规划推理技术。介绍了该研究在医疗、教育等领域的典型应用场景,梳理了支撑相关研究的中英文通用和垂直领域知识图谱数据集资源。针对现存方法的局限性提出了未来研究方向。
张静, 黄文锋, 吴春江, 谭浩. 大模型增强知识图谱的构建与推理研究综述[J]. 计算机科学与探索, 2025, 19(11): 2855-2872.
ZHANG Jing, HUANG Wenfeng, WU Chunjiang, TAN Hao. Overview of Knowledge Graph Construction and Reasoning Enhanced by Large Language Models[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(11): 2855-2872.
| [1] ZHAO W X, ZHOU K, LI J Y, et al. A survey of large language models[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2303.18223. [2] PAN S R, LUO L H, WANG Y F, et al. Unifying large language models and knowledge graphs: a roadmap[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2306.08302. [3] PAN J Z, RAZNIEWSKI S, KALO J C, et al. Large language models and knowledge graphs: opportunities and challenges[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2308.06374. [4] LI H, APPLEBY G, SUH A. A preliminary roadmap for LLMs as assistants in exploring, analyzing, and visualizing knowledge graphs[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2404.01425. [5] IBRAHIM N, ABOULELA S, IBRAHIM A, et al. A survey on augmenting knowledge graphs (KGs) with large language models (LLMs): models, evaluation metrics, benchmarks, and challenges[J]. Discover Artificial Intelligence, 2024, 4(1): 76. [6] SUN J, XU C, TANG L, et al. Think-on-Graph: deep and responsible reasoning of large language model on knowledge graph[C]//Proceedings of the 11th International Conference on Learning Representations, 2023. [7] 黄勃, 吴申奥, 王文广, 等. 图模互补: 知识图谱与大模型融合综述[J]. 武汉大学学报(理学版), 2024, 70(4): 397-412. HUANG B, WU S A, WANG W G, et al. KG-LLM-MCom: a survey on integration of knowledge graph and large language model[J]. Journal of Wuhan University (Natural Science Edition), 2024, 70(4): 397-412. [8] KHORASHADIZADEH H, AMARA F Z, EZZABADY M, et al. Research trends for the interplay between large language models and knowledge graphs[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2406.08223. [9] 孔文强. 基于LLM Prompt技术的领域知识图谱构建框架研究[D]. 成都: 电子科技大学, 2024. KONG W Q. A framework of constructing domain knowledge graph based on LLM prompt[D]. Chengdu: University of Electronic Science and Technology of China, 2024. [10] VASWANI A. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [11] SHANAHAN M. Talking about large language models[J]. Communications of the ACM, 2024, 67(2): 68-79. [12] ACHIAM O J, ADLER S, AGARWAL S, et al. GPT-4 technical report[R]. San Francisco: OpenAI, 2023. [13] THOPPILAN R, DE FREITAS D, HALL J, et al. LaMDA: language models for dialog applications[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2201.08239. [14] CHOWDHERY A, NARANG S, DEVLIN J, et al. PaLM: scaling language modeling with pathways[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2204.02311. [15] YE H B, ZHANG N Y, CHEN H, et al. Generative knowledge graph construction: a review[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2210.12714. [16] ALAM M, VAN HARMELEN F, ACOSTA M. Towards semantically enriched embeddings for knowledge graph com-pletion[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2308.00081. [17] GALARRAGA L A, TEFLIOUDI C, HOSE K, et al. AMIE: association rule mining under incomplete evidence in ontological knowledge bases[C]//Proceedings of the 22nd International Conference on World Wide Web. New York: ACM, 2013: 413-422. [18] YE J J, CHEN X T, XU N, et al. A comprehensive capability analysis of GPT-3 and GPT-3.5 series models[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2303.10420. [19] WEI X, CUI X Y, CHENG N, et al. Zero-shot information extraction via chatting with ChatGPT[EB/OL]. [2025-01-13]. https://arxiv.org/abs/2302.10205. [20] POLAK M P, MORGAN D. Extracting accurate materials data from research papers with conversational language models and prompt engineering[J]. Nature Communications, 2024, 15: 1569. [21] LOU J, LU Y J, DAI D, et al. Universal information extraction as unified semantic matching[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(11): 13318-13326. [22] LU Y J, LIU Q, DAI D, et al. Unified structure generation for universal information extraction[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2203.12277. [23] WANG X, ZHOU W K, ZU C, et al. InstructUIE: multi-task instruction tuning for unified information extraction[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2304.08085. [24] XIAO X L, WANG Y J, XU N, et al. YAYI-UIE: a chat-enhanced instruction tuning framework for universal information extraction[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2312.15548. [25] ZHONG L F, WU J, LI Q, et al. A comprehensive survey on automatic knowledge graph construction[J]. ACM Computing Surveys, 2024, 56(4): 1-62. [26] KOMMINENI V K, K?NIG-RIES B, SAMUEL S. From human experts to machines: an LLM supported approach to ontology and knowledge graph construction[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2403.08345. [27] ZHANG B W, SOH H. Extract, define, canonicalize: an LLM-based framework for knowledge graph construction[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2404.03868. [28] CHEN B H, BERTOZZI A L. AutoKG: efficient automated knowledge graph generation for language models[C]//Proceedings of the 2023 IEEE International Conference on Big Data. Piscataway: IEEE, 2023: 3117-3126. [29] CHEN H Z, SHEN X, LV Q T, et al. SAC-KG: exploiting large language models as skilled automatic constructors for domain knowledge graphs[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2410.02811. [30] CHEN Z, GUO L B, FANG Y, et al. Rethinking uncertainly missing and ambiguous visual modality in multi-modal entity alignment[C]//Proceedings of the 22nd International Semantic Web Conference. Cham: Springer, 2023: 121-139. [31] ZHANG B, MENDEZ S J R, OMRAN P G. ASKG: an approach to enrich scholarly knowledge graphs through paper decomposition with deep learning[C]//Proceedings of the ISWC 2023 Posters, Demos and Industry Tracks: From Novel Ideas to Industrial Practice Co-Located with the 22nd International Semantic Web Conference, 2023. [32] YAO L, PENG J Z, MAO C S, et al. Exploring large language models for knowledge graph completion[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2308.13916. [33] WEI Y B, HUANG Q S, KWOK J T, et al. KICGPT: large language model with knowledge in context for knowledge graph completion[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2402.02389. [34] LI D W, TAN Z, CHEN T L, et al. Contextualization distillation from large language model for knowledge graph completion[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2402.01729. [35] ZHANG Y C, CHEN Z, GUO L B, et al. Making large language models perform better in knowledge graph completion[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2310.06671. [36] LI M Z, YANG C H, XU C J, et al. Retrieval, reasoning, re-ranking: a context-enriched framework for knowledge graph completion[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2411.08165. [37] CHOUDHARY N, REDDY C K. Complex logical reasoning over knowledge graphs using large language models[EB/OL]. [2025-01-14]. https://arxiv.org/abs/2305.01157. [38] KIM J, KWON Y, JO Y, et al. KG-GPT: a general framework for reasoning on knowledge graphs using large language models[EB/OL]. [2025-01-15]. https://arxiv.org/abs/2310.11220. [39] SUN L, WANG X C, LI Y D. Pyramid-driven alignment: pyramid principle guided integration of large language models and knowledge graphs[EB/OL]. [2025-01-15]. https://arxiv.org/abs/2410.12298. [40] MA J, GAO Z T, CHAI Q, et al. Debate on graph: a flexible and reliable reasoning framework for large language models[EB/OL]. [2025-01-15]. https://arxiv.org/abs/2409.03155. [41] LUO L H, ZHAO Z C, HAFFARI G, et al. Graph-constrained reasoning: faithful reasoning on knowledge graphs with large language models[EB/OL]. [2025-01-15]. https://arxiv.org/abs/2410.13080. [42] CUI Y N, SUN Z Q, HU W. A prompt-based knowledge graph foundation model for universal in-context reasoning[EB/OL]. [2025-01-15]. https://arxiv.org/abs/2410.12288. [43] JIANG J H, ZHOU K, ZHAO W X, et al. KG-agent: an efficient autonomous agent framework for complex reasoning over knowledge graph[EB/OL]. [2025-01-15]. https://arxiv.org/abs/2402.11163. [44] GHAFAROLLAHI A, BUEHLER M J. SciAgents: automating scientific discovery through multi-agent intelligent graph reasoning[EB/OL]. [2025-01-15]. https://arxiv.org/abs/2409.05556. [45] ZHAO X J, BLUM M, YANG R, et al. AGENTiGraph: an interactive knowledge graph platform for LLM-based chatbots utilizing private data[EB/OL]. [2025-01-15]. https://arxiv.org/abs/2410.11531. [46] GAO J Q, ZOU X, AI Y, et al. Graph counselor: adaptive graph exploration via multi-agent synergy to enhance LLM reasoning[EB/OL]. [2025-06-07]. https://arxiv.org/abs/2506.03939. [47] ALAM F, GIGLOU H B, MALIK K M. Automated clinical knowledge graph generation framework for evidence based medicine[J]. Expert Systems with Applications, 2023, 233: 120964. [48] JIANG P C, XIAO C, CROSS A, et al. GraphCare: enhancing healthcare predictions with personalized knowledge graphs[EB/OL]. [2025-01-16]. https://arxiv.org/abs/2305.12788. [49] YU H, ZHOU J, LI L, et al. AIPatient: simulating patients with EHRs and LLM powered agentic workflow[EB/OL]. [2025-01-16]. https://arxiv.org/abs/2409.18924. [50] ZUO K W, JIANG Y R, MO F, et al. KG4Diagnosis: a hierarchical multi-agent LLM framework with knowledge graph enhancement for medical diagnosis[EB/OL]. [2025-01-16]. https://arxiv.org/abs/2412.16833. [51] 张鹤译, 王鑫, 韩立帆, 等. 大语言模型融合知识图谱的问答系统研究[J]. 计算机科学与探索, 2023, 17(10): 2377-2388. ZHANG H Y, WANG X, HAN L F, et al. Research on question answering system on joint of knowledge graph and large language models[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(10): 2377-2388. [52] CHEN S, WEN C, JIN L. Design and implementation of medical intelligent questions answering system based on knowledge graph[C]//Proceedings of the 7th IEEE Information Technology, Networking, Electronic and Automation Control Conference. Piscataway: IEEE, 2024: 1814-1818. [53] ZHOU G X, HAIHONG E, KUANG Z M, et al. Clinical decision support system for hypertension medication based on knowledge graph[J]. Computer Methods and Programs in Biomedicine, 2022, 227: 107220. [54] 刘佳, 孙新, 张宇晴. 知识图谱与大语言模型协同的教育资源内容审查[J]. 华东师范大学学报(自然科学版), 2024(5): 57-69. LIU J, SUN X, ZHANG Y Q. Educational resource content review method based on knowledge graph and large language model collaboration[J]. Journal of East China Normal University (Natural Science), 2024(5): 57-69. [55] 徐喆, 李振江. 智慧教育视域下高校教学资源与社区教育融合模式的探索[J]. 天津电大学报, 2024, 28(2): 49-55. XU Z, LI Z J. Exploration of the integration model of university teaching resources and community education under the perspective of smart education[J]. Journal of Tianjin Radio and Television University, 2024, 28(2): 49-55. [56] 吴哲, 陈希鹏. 融合大语言模型的红色资源价值挖掘与教育应用[J]. 情报科学, 2024, 42(11): 175-182. WU Z, CHEN X P. Leveraging large language models for value mining and educational application of red resources[J]. Information Science, 2024, 42(11): 175-182. [57] 张龙, 张翔, 来炳恒, 等. 大模型驱动AI“千问千答”精准服务师生个性化需求[J]. 通信学报, 2024, 45(S2): 277-284. ZHANG L, ZHANG X, LAI B H, et al. AI thousand questions and answers based on large model accurately serve the personalized needs of teachers and students[J]. Journal on Communications, 2024, 45(S2): 277-284. [58] 丁克玉. 智能辅助初等数学在线学习平台关键技术研究与实现[D]. 合肥: 中国科学技术大学, 2024. DING K Y. Research and implementation of key technologies for intelligent-assisted elementary mathematics online learning platforms[D]. Hefei: University of Science and Technology of China, 2024. [59] DA SILVEIRA M, DELADIENNEE L, ACEM K, et al. Combining knowledge graphs and LLMs for hazardous chemical information management and reuse[C]//Proceedings of the 2024 IEEE International Conference on Bioinformatics and Biomedicine. Piscataway: IEEE, 2024: 6766-6773. [60] CUI J X, NING M N, LI Z J, et al. Chatlaw: a multi-agent collaborative legal assistant with knowledge graph enhanced mixture-of-experts large language model[EB/OL]. [2025-01-16]. https://arxiv.org/abs/2306.16092. [61] YU C L, LIU X, MAIA J, et al. COSMO: a large-scale E-commerce common sense knowledge generation and serving system at Amazon[C]//Proceedings of the Companion of the 2024 International Conference on Management of Data. New York: ACM, 2024: 148-160. [62] 田小贵, 许建新, 张振明. 融合知识图谱与大模型的零件工艺设计知识问答[J]. 计算机技术与发展, 2025, 35(8): 101-109. TIAN X G, XU J X, ZHANG Z M. Knowledge question-answering method for part process design by integrating knowledge graphs and large language models[J]. Computer Technology and Development, 2025, 35(8): 101-109. [63] 何培龙, 蒋倜军, 熊少辉, 等. 基于知识增强型大语言模型的路面病害诊断方法[J/OL]. 吉林大学学报(工学版) [2025-03-11]. https://link.cnki.net/doi/10.13229/j.cnki.jdxbgxb.20241146. HE P L, JIANG T J, XIONG S H, et al. Pavement distress diagnosis based on knowledge-enhanced large language models[J/OL]. Journal of Jilin University (Engineering and Technology Edition) [2025-03-11]. https://link.cnki.net/doi/10.13229/j.cnki.jdxbgxb.20241146. [64] 刘卓娴, 石拓, 胡啸峰. 基于语言模型和图算法的电信网络诈骗警情要素抽取与模式挖掘[J/OL]. 情报杂志 [2025-03-11]. http://kns.cnki.net/kcms/detail/61.1167.g3.20250304. 1743.004.html. LIU Z X, SHI T, HU X F. Extraction of elements and pattern mining of telecommunication network fraud alerts based on language model and graph algorithm[J/OL]. Journal of Intelligence [2025-03-11]. http://kns.cnki.net/kcms/detail/61.1167.g3.20250304.1743.004.html. [65] 魏艳飞. 基于知识图谱模型的汽车故障智能诊断方法[J]. 专用汽车, 2025(2): 87-89. WEI Y F. Intelligent diagnosis method of automobile faults based on knowledge graph model[J]. Special Purpose Vehicle, 2025(2): 87-89. [66] 许骏, 潘欣, 佘向飞. 基于知识图谱与大语言模型的文旅知识智能整合方法研究[J]. 吉林师范大学学报(自然科学版), 2025, 46(1): 111-116. XU J, PAN X, SHE X F. Intelligent integration method of cultural and tourism knowledge based on knowledge graphs and large language models[J]. Journal of Jilin Normal University (Natural Science Edition), 2025, 46(1): 111-116. [67] AUER S, BIZER C, KOBILAROV G, et al. DBpedia: a nucleus for a web of open data[C]//Proceedings of the 6th International Semantic Web Conference, the 2nd Asian Semantic Web Conference. Berlin: Springer, 2007: 722-735. [68] SUCHANEK F M, KASNECI G, WEIKUM G. YAGO: a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web. New York: ACM, 2007: 697-706. [69] BOLLACKER K, COOK R, TUFTS P. Freebase: a shared database of structured general human knowledge[EB/OL]. [2025-01-16]. https://cdn.aaai.org/AAAI/2007/AAAI07-355.pdf. [70] NAVIGLI R, PONZETTO S P. BabelNet: building a very large multilingual semantic network[C]//Proceedings of the Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2010: 216-225. [71] SPEER R, CHIN J, HAVASI C. ConceptNet 5.5: an open multilingual graph of general knowledge[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2017, 31(1): 4444-4451. |
| [1] | 昂格鲁玛, 王斯日古楞, 斯琴图. 知识图谱补全研究综述[J]. 计算机科学与探索, 2025, 19(9): 2302-2318. |
| [2] | 冯勇, 栾超杰, 王嵘冰, 徐红艳, 张永刚. 聚合全局交互与局部交互的知识图谱补全[J]. 计算机科学与探索, 2025, 19(7): 1909-1917. |
| [3] | 时振普, 吕潇, 董彦如, 刘静, 王晓燕. 医学领域多模态知识图谱融合技术发展现状研究[J]. 计算机科学与探索, 2025, 19(7): 1729-1746. |
| [4] | 沙潇, 王建文, 丁建川, 徐笑然. 融合层级知识图谱嵌入与注意力机制的推荐方法[J]. 计算机科学与探索, 2025, 19(6): 1508-1521. |
| [5] | 周汉文, 邓赵红, 张炜. 基于全域跨语义融合的多级酶功能预测[J]. 计算机科学与探索, 2025, 19(6): 1588-1597. |
| [6] | 周家旋, 柳先辉, 赵晓东, 侯文龙, 赵卫东. 融合自适应超图的自监督知识感知推荐模型[J]. 计算机科学与探索, 2025, 19(5): 1217-1229. |
| [7] | 陈子建, 王斯日古楞, 斯琴图. 大模型微调的多领域机器翻译方法综述[J]. 计算机科学与探索, 2025, 19(4): 916-928. |
| [8] | 金海波, 冯雨静. 社交知识感知网络推荐算法[J]. 计算机科学与探索, 2025, 19(4): 1105-1114. |
| [9] | 叶志鸿, 吴运兵, 戴思翀, 曾智宏. 多级融合知识图谱补全模型[J]. 计算机科学与探索, 2025, 19(3): 724-737. |
| [10] | 荆博祥, 王海荣, 王彤, 杨振业. 多模态特征增强的双层融合知识推理方法[J]. 计算机科学与探索, 2025, 19(2): 406-416. |
| [11] | 陆佳民, 张晶, 冯钧, 安琪. 时序知识图谱构建研究综述[J]. 计算机科学与探索, 2025, 19(2): 295-315. |
| [12] | 薛迪, 李欣, 蒋章涛, 王晓宇, 刘明帅. 面向涉案财物的业务知识视觉问答技术框架[J]. 计算机科学与探索, 2025, 19(12): 3267-3278. |
| [13] | 郑傲泽, 张坤丽, 李云龙, 王影, 袁颂瑞, 吴鹏程, 贾玉祥, 昝红英. 基于大模型验证增强的产业链知识图谱构建研究[J]. 计算机科学与探索, 2025, 19(12): 3328-3339. |
| [14] | 徐国愚, 张一丹, 魏笑, 毛洋敏. 自适应路由与双阈值剪枝的多模态大模型检索增强感知[J]. 计算机科学与探索, 2025, 19(12): 3257-3266. |
| [15] | 卢斌, 刘建峰, 王浩琳, 张玉志, 陈锐. 多模态信息融合指导的OpenFOAM图形界面代码生成框架[J]. 计算机科学与探索, 2025, 19(12): 3243-3256. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||