Journal of Frontiers of Computer Science and Technology ›› 2019, Vol. 13 ›› Issue (3): 481-493.DOI: 10.3778/j.issn.1673-9418.1804006

Previous Articles     Next Articles

Fireworks and Differential Hybrid Multi-Objective Algorithm Guided by Evolutionary Information

HUANG Huixian, HU Pin+, DING Can, ZHANG Guangyan, LIU Jiating   

  1. Institute of Information Engineering, Xiangtan University, Xiangtan, Hunan 411100, China
  • Online:2019-03-01 Published:2019-03-11

进化信息引导的烟花差分混合多目标算法

黄辉先,胡  拚+,丁  灿,张广炎刘嘉婷   

  1. 湘潭大学 信息工程学院,湖南 湘潭 411100

Abstract: Fireworks algorithm is an effective heuristic swarm intelligence algorithm proposed recently. But the basic fireworks algorithm can only solve the single objective problem, and it lacks information communication between individuals. The useful information is underutilized in the process of evolution. In order to improve the comprehensive performance of the fireworks algorithm and make it be used in solving multi-objective optimization problems (MOPs), this paper puts forward a kind of multi-objective hybrid optimization algorithm of fireworks and differential guided by evolution information (OHMFWDE). The Pareto frontier individual evolutionary information is used to guide the evolution of the population to accelerate the algorithm convergence speed. Crossover operator and mutation operator of differential algorithm are used instead of the original Gaussian mutation operator in fireworks algorithm to strengthen the exchange of information between individuals. Experimental results show that MOHFWDE is an effective multi-objective optimization algorithm which has good convergence, diversity and approximation compared with other algorithms.

Key words: multi-objective optimization, fireworks algorithm, differential algorithm, hybrid optimization algorithm

摘要: 烟花算法是一种有效启发式群智能算法,但基本的烟花算法只能解决单目标问题,个体间缺乏信息交流,进化过程中有用信息没有得到充分利用。为提高烟花算法的综合性能,并使其能够应用在多目标优化问题(multi-objective optimization problems,MOPs)上,提出一种基于粒子进化信息引导的自适应多目标烟花差分混合进化算法(multi-objective hybrid optimization algorithm of fireworks and differential guided by evolution information,MOHFWDE)。利用Pareto前沿个体的进化信息引导种群进化,加快算法收敛速度;在烟花算法中引入差分算法的变异算子、交叉算子替换原有高斯变异算子,增强个体间的信息交流。与其他算法进行对比仿真实验,结果表明MOHFWDE具有良好的收敛性、分布性和逼近性。

关键词: 多目标优化, 烟花算法, 差分算法, 混合优化算法