Journal of Frontiers of Computer Science and Technology ›› 2020, Vol. 14 ›› Issue (7): 1081-1103.DOI: 10.3778/j.issn.1673-9418.1911063
Previous Articles Next Articles
SONG Yumeng, GU Yu, LI Fangfang, YU Ge
Online:
2020-07-01
Published:
2020-08-12
SONG Yumeng, GU Yu, LI Fangfang, YU Ge. Survey on AI Powered New Techniques for Query Processing and Optimization[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(7): 1081-1103.
宋雨萌,谷峪,李芳芳,于戈. 人工智能赋能的查询处理与优化新技术研究综述[J]. 计算机科学与探索, 2020, 14(7): 1081-1103.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.1911063
[1] Zhou A Y, Jin C Q, Wang G R, et al. A survey on the management of uncertain data[J]. Chinese Journal of Computers, 2009, 32(1): 1-16. 周傲英, 金澈清, 王国仁, 等. 不确定性数据管理技术研究综述[J]. 计算机学报, 2009, 32(1): 1-16. [2] Kraska T, Alizadeh M, Beutel A, et al. Sagedb: a learned data- base system[C]//Proceedings of the 9th Biennial Conference on Innovative Data Systems Research, Asilomar, Jan 13-16, 2019: 13. [3] Wang W, Zhang M, Chen G, et al. Database meets deep lear-ning: challenges and opportunities[J]. ACM SIGMOD Record, 2016, 45(2): 17-22. [4] Sun L M, Zhang S M, Ji T, et al. Survey of data management techniques powered by artificial intelligence[J]. Journal of Software, 2020, 31(3): 600-619. 孙路明, 张少敏, 姬涛, 等. 人工智能赋能的数据管理技术研究[J]. 软件学报, 2020, 31(3): 600-619. [5] Li G L, Zhou X H, Sun J, et al. A survey of machine-learning-based database techniques[J/OL]. Chinese Journal of Computers (2019-11-04) [2020-02-20]. http://kns.cnki.net/kcms/detail/11.1826.TP.20191104.1009.002.html. 李国良, 周煊赫, 孙佶, 等. 基于机器学习的数据库技术综述[J/OL]. 计算机学报(2019-11-04) [2020-02-20]. http://kns.cnki.net/kcms/detail/11.1826.TP.20191104.1009.002.html. [6] Meng X F, Ma C H, Yang C. Survey on machine learning for database systems[J]. Journal of Computer Research and Development, 2019, 56(9): 1803-1820. 孟小峰, 马超红, 杨晨. 机器学习化数据库系统研究综述[J]. 计算机研究与发展, 2019, 56(9): 1803-1820. [7] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436-444. [8] Kohonen T. An introduction to neural computing[J]. Neural Networks, 1988, 1(1): 3-16. [9] Sutton R S, Barto A G. Reinforcement learning: an introduction[M]. Cambridge: MIT Press, 2018. [10] Hu B, Lu Z, Li H, et al. Convolutional neural network architectures for matching natural language sentences[C]//Proceedings of the 2014 Annual Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Cambridge: MIT Press, 2014: 2042-2050. [11] Lipton Z C, Berkowitz J, Elkan C. A critical review of recurrent neural networks for sequence learning[J]. arXiv:1506. 00019, 2015. [12] Graefe G, Larson P A. B-tree indexes and CPU caches[C]//Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Apr 2-6, 2001. Piscataway: IEEE, 2001: 349-358. [13] Bayer R, McCreight E. Organization and maintenance of large ordered indexes[M]//Software Pioneers. Berlin, Heidelberg: Springer, 2002: 245-262. [14] Lehman T J, Carey M J. A study of index structures for main memory database management systems[R]. University of Wisconsin-Madison. Department of Computer Sciences, 1985. [15] Bayer R. Symmetric binary B-trees: data structure and maintenance algorithms[J]. Acta Informatica, 1972, 1(4): 290-306. [16] Galakatos A, Markovitch M, Binnig C, et al. A-tree: a bounded approximate index structure[J]. arXiv:1801.10207, 2018. [17] Hadian A, Heinis T. Interpolation-friendly B-trees: bridging the gap between algorithmic and learned indexes[C]//Proceedings of the 22nd International Conference on Extending Database Technology, Lisbon, Mar 26, 2019. Berlin, Heidelberg: Springer, 2019: 710-713. [18] Kraska T, Beutel A, Chi E H, et al. The case for learned index structures[C]//Proceedings of the 2018 International Conference on Management of Data, Houston, Jun 10-15, 2018. New York: ACM, 2018: 489-504. [19] Mitzenmacher M. Optimizing learned bloom filters by sandwiching[J]. arXiv:1803.01474, 2018. [20] Oosterhuis H, Culpepper J S, De Rijke M. The potential of learned index structures for index compression[J]. arXiv:1811.06678, 2018. [21] Hadian A, Heinis T. Considerations for handling updates in learned index structures[C]//Proceedings of the 2nd International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, Amsterdam, Jul 5, 2019. New York: ACM, 2019: 3. [22] Marcus R, Papaemmanouil O. Towards a hands-free query optimizer through deep learning[J]. arXiv:1809.10212, 2018. [23] Wang Z, Bapst V, Heess N, et al. Sample efficient actor-critic with experience replay[J]. arXiv:1611.01224, 2016. [24] The PostgreSQL Global Development Group. PostgreSQL: the world??s most advanced open source database[EB/OL]. [2020-03-16]. http://www.postgresql.org/. [25] Microsoft. SQL server[EB/OL]. [2020-03-16]. https://microsoft.com/sql-server/. [26] Marcus R, Papaemmanouil O. Deep reinforcement learning for join order enumeration[C]//Proceedings of the 1st International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, Houston, Jun 10, 2018. New York: ACM, 2018: 3. [27] Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep reinforcement learning[J]. arXiv: 1808.03196, 2018. [28] Trummer I, Wang J, Maram D, et al. SkinnerDB: regret-bounded query evaluation via reinforcement learning[C]//Proceedings of the 2019 International Conference on Management of Data, Amsterdam, Jun 30-Jul 5, 2019. New York: ACM, 2019: 1153-1170. [29] Kocsis L, Szepesvári C. Bandit based Monte-Carlo planning[C]//Proceedings of the 2006 European Conference on Machine Learning, Berlin, Sep 18-22, 2006. Berlin, Heidelberg: Springer, 2006: 282-293. [30] Leis V, Gubichev A, Mirchev A, et al. How good are query optimizers, really?[J]. Proceedings of the VLDB Endowment, 2015, 9(3): 204-215. [31] Akdere M, Çetintemel U, Riondato M, et al. Learning-based query performance modeling and prediction[C]//Proceedings of the 28th IEEE International Conference on Data Engineering, Washington, Apr 1-5, 2012. Piscataway: IEEE, 2012: 390-401. [32] Marcus R, Papaemmanouil O. Plan-structured deep neural network models for query performance prediction[J]. arXiv:1902.00132, 2019. [33] Idreos S, Zoumpatianos K, Hentschel B, et al. The data calculator: data structure design and cost synthesis from first principles and learned cost models[C]//Proceedings of the 2018 International Conference on Management of Data, Houston, Jun 10-15, 2018. New York: ACM, 2018: 535-550. [34] Sun J, Li G. An end-to-end learning-based cost estimator[J]. arXiv:1906.02560, 2019. [35] Karnagel T, Habich D, Lehner W. Local vs. global optimization: operator placement strategies in heterogeneous environments[C]//Proceedings of the EDBT/ICDT Workshops, Brussels, Mar 27, 2015. Berlin, Heidelberg: Springer, 2015: 48-55. [36] Leis V, Radke B, Gubichev A, et al. Cardinality estimation done right: index-based join sampling[C]//Proceedings of the 8th Biennial Conference on Innovative Data Systems Research, Chaminade, Jan 8-11, 2017: 8. [37] Kipf A, Vorona D, Müller J, et al. Estimating cardinalities with deep sketches[J]. arXiv:1904.08223, 2019. [38] Lakshmi S, Zhou S. Selectivity estimation in extensible databases—a neural network approach[C]//Proceedings of the 24th International Conference on Very Large Data Bases, New York, Aug 24-27, 1998, New York: ACM, 1998: 623-627. [39] Malik T, Burns R C, Chawla N V. A black-box approach to query cardinality estimation[C]//Proceedings of the 3rd Biennial Conference on Innovative Data Systems Research, Asilomar, Jan 7-10, 2007: 56-67. [40] Liu H, Xu M, Yu Z, et al. Cardinality estimation using neural networks[C]//Proceedings of the 25th Annual International Conference on Computer Science and Software Engineering, Markham, Nov 2-4, 2015. New York: ACM, 2015: 53-59. [41] Hasan S, Thirumuruganathan S, Augustine J, et al. Multi-attribute selectivity estimation using deep learning[J]. arXiv: 1903.09999, 2019. [42] Kipf A, Kipf T, Radke B, et al. Learned cardinalities: estimating correlated joins with deep learning[J]. arXiv:1809. 00677, 2018. [43] Woltmann L, Hartmann C, Thiele M, et al. Cardinality estimation with local deep learning models[C]//Proceedings of the 2nd International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, Amsterdam, Jul 5, 2019. New York: ACM, 2019: 5. [44] Ortiz J, Balazinska M, Gehrke J, et al. Learning state representations for query optimization with deep reinforcement learning[J]. arXiv:1803.08604, 2018. [45] Germain M, Gregor K, Murray I, et al. Made: masked autoencoder for distribution estimation[C]//Proceedings of the 2015 International Conference on Machine Learning, Lille, Jul 6-11, 2015. New York: ACM, 2015: 881-889. [46] Ma Q, Triantafillou P. DBEst: revisiting approximate query processing engines with machine learning models[C]//Proceedings of the 2019 International Conference on Management of Data, Amsterdam, Jun 30 - Jul 5, 2019. New York: ACM, 2019: 1553-1570. [47] Thirumuruganathan S, Hasan S, Koudas N, et al. Approximate query processing using deep generative models[J]. arXiv:1903.10000, 2019. [48] Pedregosa F, Varoquaux G, Gramfort A, et al. Scikit-learn: machine learning in Python[J]. Journal of Machine Learning Research, 2011, 12: 2825-2830. [49] Chen T, Guestrin C. Xgboost: a scalable tree Boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 785-794. [50] Prokhorenkova L, Gusev G, Vorobev A, et al. CatBoost: unbiased Boosting with categorical features[C]//Proceedings of the 2018 Annual Conference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018. Cambridge: MIT Press, 2018: 6638-6648. [51] Ke G, Meng Q, Finley T, et al. Lightgbm: a highly efficient gradient Boosting decision tree[C]//Proceedings of the 2017 Annual Conference on Neural Information Processing Systems, Long Beach, Dec 4-9, 2017. Cambridge: MIT Press, 2017: 3146-3154. [52] Friedman J H. Stochastic gradient Boosting[J]. Computational Statistics & Data Analysis, 2002, 38(4): 367-378. [53] Mozafari B. Approximate query engines: commercial challenges and research opportunities[C]//Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, May 14-19, 2017. New York: ACM, 2017: 521-524. [54] Mozafari B, Niu N. A handbook for building an approximate query engine[J]. IEEE Data Engineering Bulletin, 2015, 38(3): 3-29. [55] Grover A, Gummadi R, Lazaro-Gredilla M, et al. Variational rejection sampling[J]. arXiv:1804.01712, 2018. [56] Park Y, Mozafari B, Sorenson J, et al. Verdictdb: universalizing approximate query processing[C]//Proceedings of the 2018 International Conference on Management of Data, Houston, Jun 10-15, 2018. New York: ACM, 2018: 1461-1476. [57] Agrawal S, Chaudhuri S, Kollar L, et al. Database tuning advisor for microsoft SQL server 2005[C]//Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, Baltimore, Jun 14-16, 2005. New York: ACM, 2005: 930-932. [58] Bruno N, Chaudhuri S. An online approach to physical design tuning[C]//Proceedings of the 23rd IEEE International Conference on Data Engineering, Istanbul, Apr 15-20, 2007. Piscataway: IEEE, 2007: 826-835. [59] Chaudhuri S, Narasayya V R. An efficient, cost-driven index selection tool for Microsoft SQL server[C]//Proceedings of the 23rd International Conference on Very Large Data Bases, Athens, Aug 25-29, 1997. New York: ACM, 1997: 146-155. [60] Chaudhuri S, Narasayya V. AutoAdmin “what-if” index analysis utility[C]//Proceedings of the 1998 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1998: 367-378. [61] Chaudhuri S, Narasayya V. Self-tuning database systems: a decade of progress[C]//Proceedings of the 33rd International Conference on Very Large Data Bases, Austria, Sep 23-27, 2007. New York: ACM, 2007: 3-14. [62] Ding B, Das S, Marcus R, et al. Ai meets ai: leveraging query executions to improve index recommendations[C]//Proceedings of the 2019 International Conference on Management of Data, Amsterdam, Jun 30-Jul 5, 2019. New York: ACM, 2019: 1241-1258. [63] Vu T. Deep query optimization[C]//Proceedings of the 2019 International Conference on Management of Data, Amsterdam, Jun 30-Jul 5, 2019. New York: ACM, 2019: 1856-1858. [64] Qiu T, Wang B, Shu Z W, et al. Intelligent index tuning approach for relational databases[J]. Journal of Software, 2020, 31(3): 634-647. 邱涛, 王斌, 舒昭维, 等. 一种面向关系数据库的智能索引调优方法[J]. 软件学报, 2020, 31(3): 634-647. [65] Sun J, Li G L. An end-to-end query optimization engine based on deep learning[J]. Journal of Chifeng University(Natural Science Edition), 2019, 35(1): 1-5. 孙佶, 李国良. 一个端到端的基于深度学习的查询优化引擎[J]. 赤峰学院学报(自然科学版), 2019, 35(1): 1-5. [66] Marcus R, Negi P, Mao H, et al. Neo: a learned query optimizer[J]. arXiv:1904.03711, 2019. [67] Mou L, Li G, Zhang L, et al. Convolutional neural networks over tree structures for programming language processing[C]//Proceedings of the 30th AAAI Conference on Artificial Intelligence, Phoenix, Feb 12-17, 2016. Menlo Park: AAAI, 2016: 1287-1293. [68] Dechter R, Pearl J. Generalized best-first search strategies and the optimality of A[J]. Journal of the ACM, 1985, 32(3): 505-536. [69] Bellman R. A Markovian decision process[J]. Indiana University Mathematics Journal, 1957, 6(4): 15. [70] Xu L, Cole R L, Ting D. Learning to optimize federated queries[C]//Proceedings of the 2nd International Workshop on Exploiting Artificial Intelligence Techniques for Data Management, Amsterdam, Jul 5, 2019. New York: ACM, 2019: 1-7. [71] Cao W. Survey on automatic physical database design[J]. Application Research of Computers, 2012(5): 12-18. 曹巍. 数据库物理自调优研究技术综述[J]. 计算机应用研究, 2012(5): 12-18. [72] Lu J, Chen Y, Herodotou H, et al. Speedup your analytics: automatic parameter tuning for databases and big data systems[J]. Proceedings of the VLDB Endowment, 2019, 12(12): 1970-1973. [73] Rodd S F, Kulkarni U P. Adaptive tuning algorithm for performance tuning of database management system[J]. arXiv:1005.0972, 2010. [74] Zheng C, Ding Z, Hu J. Self-tuning performance of database systems with neural network[C]//Proceedings of the 2014 International Conference on Intelligent Computing, Taiyuan, Aug 3-6, 2014. Berlin, Heidelberg: Springer, 2014: 1-12. [75] Van Aken D, Pavlo A, Gordon G J, et al. Automatic database management system tuning through large-scale machine learning[C]//Proceedings of the 2017 ACM International Conference on Management of Data, Chicago, May 14-19, 2017. New York: ACM, 2017: 1009-1024. [76] Scikit-learn documentation—factor analysis[EB/OL]. [2019-11-28]. http://scikit-learn.org/stable/modules/generated/sklearn. decomposition.FactorAnalysis.html. [77] Scikit-learn documentation—KMeans[EB/OL]. [2019-11-28]. http://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html. [78] Tibshirani R. Regression shrinkage and selection via the lasso[J]. Journal of the Royal Statistical Society: Series B (Methodological), 1996, 58(1): 267-288. [79] Rasmussen C E. Gaussian processes in machine learning[C]//LNCS 3176: Advanced Lectures on Machine Learning. Berlin, Heidelberg: Springer, 2003: 63-71. [80] Zhang J, Liu Y, Zhou K, et al. An end-to-end automatic cloud database tuning system using deep reinforcement learning[C]//Proceedings of the 2019 International Conference on Management of Data, Amsterdam, Jun 30-Jul 5, 2019. New York: ACM, 2019: 415-432. [81] Lillicrap T P, Hunt J J, Pritzel A, et al. Continuous control with deep reinforcement learning[J]. arXiv:1509.02971, 2015. [82] Li G, Zhou X, Li S, et al. QTune: a query-aware database tuning system with deep reinforcement learning[J]. Procee-dings of the VLDB Endowment, 2019, 12(12): 2118-2130. [83] Ma L, Van Aken D, Hefny A, et al. Query-based workload forecasting for self-driving database management systems[C]//Proceedings of the 2018 International Conference on Management of Data, Houston, Jun 10-15, 2018. New York: ACM, 2018: 631-645. [84] Li G L, Zhou X H. Xuan Yuan: an AI-native database systems[J]. Journal of Software, 2020, 31(3): 831-844. 李国良, 周煊赫. 轩辕: AI原生数据库系统[J]. 软件学报, 2020, 31(3): 831-844. [85] Oracle. Oracle??s autonomous database[EB/OL]. [2020-02-20]. https://www.oracle.com/database/autonomous-database. html. [86] Huawei. Huawei database & storage product launch[EB/OL]. [2020-02-20]. http://e.huawei.com/topic/database-storage-launch2019/cn/. [87] Carnegie Mellon University Database Group. Peloton database management system[EB/OL]. [2020-02-20]. http://pelotondb.org. |
[1] | WANG Dicong, BAI Chenshuai, WU Kaijun. Survey of Video Object Detection Based on Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1563-1577. |
[2] | ZHANG Xiaoxu, MA Zhiqiang, LIU Zhiqiang, ZHU Fangyuan, WANG Chunyu. Research Status and Prospect of Transformer in Speech Recognition [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1578-1594. |
[3] | CHEN Fan, PENG Li. Person Re-identification Based on Multi-level Feature Fusion with Overlapping Stripes [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1753-1761. |
[4] | WU Jiawei, SUN Yanchun. Recommendation System for Medical Consultation Integrating Knowledge Graph and Deep Learning Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1432-1440. |
[5] | MA Yu, DU Huimin, MAO Zhili, ZHANG Xia. Crowd Density Detection Technology Based on Deep Semantic Segmentation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1469-1475. |
[6] | RONG Huan, MA Tinghuai. Two-Phase Crowdsourced Comment Integration Method Based on Reward Prediction and Policy Gradient [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1476-1489. |
[7] | MA Yukun, XU Yaowen, ZHAO Xin, XU Tao, WANG Zerui. Review of Presentation Attack Detection in Face Recognition System [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1195-1206. |
[8] | GE Yizhou, XU Xiang, YANG Suorong, ZHOU Qing, SHEN Furao. Survey on Sequence Data Augmentation [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1207-1219. |
[9] | FANG Junting, TAN Xiaoyang. Defect Detection of Metal Surface Based on Attention Cascade R-CNN [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1245-1254. |
[10] | YANG Yue, WANG Shitong. Novel Four-Layer Neural Network and Its Incremental Learning Based on Randomly Mapped Features [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(7): 1265-1278. |
[11] | TIAN Xuan, DING Qi, LIAO Zihui, SUN Guodong. Survey on Deep Learning Based News Recommendation Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 971-998. |
[12] | NENG Wenpeng, LU Jun, ZHAO Caihong. Survey of Sleep Staging Based on Relational Induction Biases [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1026-1037. |
[13] | LYU Haoyuan, YU Lu, ZHOU Xingyu, DENG Xiang. Review of Semi-supervised Deep Learning Image Classification Methods [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1038-1048. |
[14] | MA Yu, ZHANG Liguo, DU Huimin, MAO Zhili. Traffic Sign Semantic Segmentation Based on Convolutional Neural Network [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1114-1121. |
[15] | TANG Lingyan, XIONG Congcong, WANG Yuan, ZHOU Yubo, ZHAO Zijian. Review of Deep Learning for Short Text Sentiment Tendency Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(5): 794-811. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/