[1] Wold S, Esbensen K, Geladi P. Principal component analysis[J]. Chemometrics and Intelligent Laboratory Systems, 1987, 2(3): 37-52.
[2] Clunis-Ross C W, Riffenburgh R H. Linear discriminant ana-lysis[J]. Pacific Science, 1960, 14: 251-256.
[3] Andrews H, Patterson C. Singular value decomposition (SVD) image coding[J]. IEEE Transactions on Communications, 1976, 24(4): 425-432.
[4] Lee D D, Seung H S. Learning the parts of objects by non-negative matrix factorization[J]. Nature, 1999, 401(6755): 788-791.
[5] Ding C, He X, Simon H D. On the equivalence of nonne-gative matrix factorization and spectral clustering[C]//Pro-ceedings of the 2005 SIAM International Conference on Data Mining, Newport Beach, 2005. Philadelphia: SIAM, 2005: 606-610.
[6] Kuang D, Ding C, Park H. Symmetric nonnegative matrix factorization for graph clustering[C]//Proceedings of the 2012 SIAM International Conference on Data Mining, Anaheim, 2012. Philadelphia: SIAM, 2012: 106-117.
[7] Lee D D, Seung H S. Algorithms for non-negative matrix factorization[C]//Advances in Neural Information Processing Systems 13: Proceedings of the 14th Annual Neural Infor-mation Processing Systems Conference, Denver, 2000. Cam-bridge: MIT Press, 2001: 556-562.
[8] Cai D, He X, Han J, et al. Graph regularized nonnegative matrix factorization for data representation[J]. IEEE Transa-ctions on Pattern Analysis and Machine Intelligence, 2010, 33(8): 1548-1560.
[9] Babaee M, Tsoukalas S, Babaee M, et al. Discriminative non-negative matrix factorization for dimensionality reduction[J]. Neurocomputing, 2016, 173: 212-223.
[10] Scholkopf B, Smola A, Müller K R. Nonlinear component analysis as a kernel eigenvalue problem[J]. Neural Compu-tation, 1998, 10(5): 1299-1319.
[11] Pekalska E, Haasdonk B. Kernel discriminant analysis for positive definite and indefinite kernels[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 31(6): 1017-1032.
[12] Buciu I, Nikolaidis N, Pitas I. Nonnegative matrix factoriza-tion in polynomial feature space[J]. IEEE Transactions on Neural Networks, 2008, 19(6): 1090-1100.
[13] Ding C H Q, Li T, Jordan M I. Convex and semi-nonnegative matrix factorizations[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008, 32(1): 45-55.
[14] Hoyer P O. Non-negative sparse coding[C]//Proceedings of the 12th IEEE Workshop on Neural Networks for Signal Pro-cessing, Martigny, 2002. Piscataway: IEEE, 2002: 557-565.
[15] Zafeiriou S, Tefas A, Buciu I, et al. Exploiting discriminant information in nonnegative matrix factorization with appli-cation to frontal face verification[J]. IEEE Transactions on Neural Networks, 2006, 17(3): 683-695.
[16] Li H, Zhang J, Shi G, et al. Graph-based discriminative non-negative matrix factorization with label information[J]. Neuro-computing, 2017, 266: 91-100.
[17] Wang J J Y, Gao X. Max-min distance nonnegative matrix factorization[J]. Neural Networks, 2015, 61: 75-84.
[18] Jiang S, Li K, Xu Y D R. Relative pairwise relationship constrained non-negative matrix factorization[J]. IEEE Trans-actions on Knowledge and Data Engineering, 2019, 31(8): 1595-1609.
[19] Peng X, Chen D, Xu D. Hyperplane-based nonnegative mat-rix factorization with label information[J]. Information Sci-ences, 2019, 493: 1-19.
[20] Chen W S, Zhao Y, Pan B, et al. Supervised kernel nonne-gative matrix factorization for face recognition[J]. Neuro-computing, 2016, 205: 165-181.
[21] Liu J M, Chen W S, Pan B B, et al. Nonlinear non-negative matrix factorization with fractional power inner-product kernel for face recognition[C]//Proceedings of the 2017 Interna-tional Conference on Security, Pattern Analysis, and Cyber-netics, Shenzhen, 2017. Piscataway: IEEE, 2017: 406-410.
[22] Sun L, Zhao K, Han C Y, et al. Enhancing hyperspectral unmi-xing with two-stage multiplicative update nonnegative matrix factorization[J]. IEEE Access, 2019, 7: 171023-171031. |