Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (6): 1383-1389.DOI: 10.3778/j.issn.1673-9418.2011060
• Artificial Intelligence • Previous Articles Next Articles
LI Zhijie(), YI Zhilin, LI Changhua, ZHANG Jie
Received:
2020-11-23
Revised:
2021-02-26
Online:
2022-06-01
Published:
2021-03-25
About author:
LI Zhijie, born in 1980, Ph.D., associate professor. His research interests include pattern recognition, digital architecture, etc.Supported by:
通讯作者:
+ E-mail: lizhijie@xauat.edu.cn作者简介:
李智杰(1980—),男,河南人,博士,副教授,主要研究方向为模式识别、数字建筑等。基金资助:
CLC Number:
LI Zhijie, YI Zhilin, LI Changhua, ZHANG Jie. Improved DF Model Applied to Inexact Graph Matching[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1383-1389.
李智杰, 伊志林, 李昌华, 张颉. 应用于非精确图匹配的改进DF模型[J]. 计算机科学与探索, 2022, 16(6): 1383-1389.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2011060
数据集 | 特征数 | 类别数 | 备注 |
---|---|---|---|
MUTAG | 188 | 2 | 该化合物是否对细菌均有诱变作用 |
PTC | 344 | 2 | 该化合物是否对老鼠有致癌行为 |
COX2 | 467 | 2 | 该分类表示在体外对人体重组酶是否有抑制作用 |
Table 1 Information of dataset
数据集 | 特征数 | 类别数 | 备注 |
---|---|---|---|
MUTAG | 188 | 2 | 该化合物是否对细菌均有诱变作用 |
PTC | 344 | 2 | 该化合物是否对老鼠有致癌行为 |
COX2 | 467 | 2 | 该分类表示在体外对人体重组酶是否有抑制作用 |
实验模型 | 深度模型层数 | ||
---|---|---|---|
MUTAG | PTC | COX2 | |
SAE | 14 | 15 | 22 |
DF | 8 | 7 | 12 |
IDF | 6 | 6 | 10 |
Table 2 The number of layers in depth model
实验模型 | 深度模型层数 | ||
---|---|---|---|
MUTAG | PTC | COX2 | |
SAE | 14 | 15 | 22 |
DF | 8 | 7 | 12 |
IDF | 6 | 6 | 10 |
实验模型 | 平均准确率/% | ||
---|---|---|---|
MUTAG | PTC | COX2 | |
IDF | 94.5 | 73.7 | 94.1 |
DF | 91.7 | 71.3 | 90.7 |
CMDF | 92.2 | 72.1 | 91.8 |
WCDF | 93.1 | 72.5 | 91.8 |
BCNNS | 89.4 | 73.4 | 92.3 |
Table 3 Average accuracy of dataset
实验模型 | 平均准确率/% | ||
---|---|---|---|
MUTAG | PTC | COX2 | |
IDF | 94.5 | 73.7 | 94.1 |
DF | 91.7 | 71.3 | 90.7 |
CMDF | 92.2 | 72.1 | 91.8 |
WCDF | 93.1 | 72.5 | 91.8 |
BCNNS | 89.4 | 73.4 | 92.3 |
[1] | 严骏驰, 杨小康. 计算机视觉中图匹配研究进展: 从二图匹配迈向多图匹配[J]. 控制理论与应用, 2018, 35(12): 1715-1724. |
YAN J C, YANG X K. Recent advance on graph matching in computer vision: from two-graph matching to multi-graph matching[J]. Control Theory & Applications, 2018, 35(12): 1715-1724. | |
[2] | 李智杰, 李昌华, 刘欣, 等. 融合拓扑特征和领域特征的非精确图匹配算法[J]. 计算机应用与软件, 2015, 32(10): 164-167. |
LI Z J, LI C H, LIU X, et al. Inexact graph matching algo-rithm integrating topological features and domain features[J]. Computer Applications and Software, 2015, 32(10): 164-167. | |
[3] | ZHANG J K, QIAN K. Graph matching using conformal module[J]. EURASIP Journal on Image and Video Processing, 2019: 26. |
[4] | 刘国庆, 卢桂馥, 周胜, 等. 非负低秩图嵌入算法[J]. 计算机科学与探索, 2020, 14(3): 502-512. |
LIU G Q, LU G F, ZHOU S, et al. Non-negative low rank graph embedding algorithm[J]. Journal of Frontiers of Com-puter Science and Technology, 2020, 14(3): 502-512. | |
[5] | 许文, 宋文爱, 富丽贞, 等. 面向大规模图数据的分布式子图匹配算法[J]. 计算机科学, 2019, 46(4): 28-35. |
XU W, SONG W A, FU L Z, et al. Distributed subgraph matching algorithm for large scale graph data[J]. Computer Science, 2019, 46(4): 28-35. | |
[6] | ZHOU Z H, FENG J. Deep forest: towards an alternative to deep neural networks[J]. arXiv:1702.08835, 2017. |
[7] | 张西宁, 郭清林, 刘书语. 深度学习技术及其故障诊断应用分析与展望[J]. 西安交通大学学报, 2020, 54(12): 1-13. |
ZHANG X N, GUO Q L, LIU S Y. Analysis and prospect of deep learning technology and its fault diagnosis applica-tion[J]. Journal of Xi’an Jiaotong University, 2020, 54(12): 1-13. | |
[8] | 佟彤, 罗森林, 潘丽敏, 等. 基于深度森林的量表数据挖掘方法[J]. 电子设计工程, 2020, 28(13): 88-91. |
TONG T, LUO S L, PAN L M, et al. Deep forest based inven-tory data mining method[J]. Electronic Design Engineering, 2020, 28(13): 88-91. | |
[9] | 葛绍林, 叶剑, 何明祥. 基于深度森林的用户购买行为预测模型[J]. 计算机科学, 2019, 46(9): 190-194. |
GE S L, YE J, HE M X. Prediction model of user purchase behavior based on deep forest[J]. Computer Science, 2019, 46(9): 190-194. | |
[10] | 陈寅栋, 李朝锋, 桑庆兵. 卷积神经网络结合深度森林的无参考图像质量评价[J]. 激光与光电子学进展, 2019, 56(11): 123-129. |
CHEN Y D, LI C F, SANG Q B. Quality assessment without reference images based on convolution neural network and deep forest[J]. Laser & Optoelectronics Progress, 2019, 56(11): 123-129. | |
[11] | 余星达, 陈文杰, 王鼎, 等. 非接触式身份识别的深度学习算法[J]. 西安交通大学学报, 2019, 53(4): 122-127. |
YU X D, CHEN W J, WANG D, et al. A deep learning algori-thm for contactless human identification[J]. Journal of Xi’an Jiaotong University, 2019, 53(4): 122-127. | |
[12] | 李昌华, 崔李扬, 李智杰. 用于非精确图匹配的改进GCN模型[J]. 计算机科学与探索, 2020, 14(8): 1397-1408. |
LI C H, CUI L Y, LI Z J. Improved GCN model for inexact graph matching[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(8): 1397-1408. | |
[13] | 乔安, 毛力, 孙俊. 基于改进深度森林的小目标检测算法[J]. 传感器与微系统, 2020, 39(5): 125-128. |
QIAO A, MAO L, SUN J. Small target detection algorithm based on improved deep forest[J]. Transducer and Micro-system Technologies, 2020, 39(5): 125-128. | |
[14] |
ZHANG Q, XU Y. Block-based selection random forest for texture classification using multi-fractal spectrum feature[J]. Neural Computing and Applications, 2016, 27(3): 593-602.
DOI URL |
[15] |
UTKIN L V. An imprecise deep forest for classification[J]. Expert Systems with Applications, 2020, 141: 112978.
DOI URL |
[16] | 宫振华, 王嘉宁, 苏翀. 一种加权的深度森林算法[J]. 计算机应用与软件, 2019, 36(2): 274-278. |
GONG Z H, WANG J N, SU C. A weighted deep forest algorithm[J]. Computer Applications and Software, 2019, 36(2): 274-278. | |
[17] |
UTKIN L V, KOVALEV M, MELDO A A. A deep forest classifier with weights of class probability distribution subsets[J]. Knowledge-Based Systems, 2019, 173: 15-27.
DOI URL |
[18] | 尹儒, 门昌骞, 王文剑. 一种模型决策森林算法[J]. 计算机科学与探索, 2020, 14(1): 108-116. |
YIN R, MEN C Q, WANG W J. Model decision forest algo-rithm[J]. Journal of Frontiers of Computer Science and Tech-nology, 2020, 14(1): 108-116. |
[1] | YU Xianfeng, GENG Shengling. Fuzzy Intelligent Decision Tree Model and Its Application [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(3): 703-712. |
[2] | XIA Xiaoqiu, CHEN Songcan. Improved Two-View Random Forest [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(1): 144-152. |
[3] | WU Xiaodong, LIU Jinghao, JIN Jie, MAO Siping. DNN Intrusion Detection Model Based on DT and PCA [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1450-1458. |
[4] | FAN Ruidong, HOU Chenping. Robust Auto-weighted Multi-view Subspace Clustering [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1062-1073. |
[5] | XUE Hongyan, QIAN Xuezhong, ZHOU Shibing. Ensemble Clustering Algorithm Based on Weighted Super Cluster [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(12): 2362-2373. |
[6] | DU Shishuai, QIU Tian, LI Lingqiao, HU Jinquan, ZHENG Anbing, FENG Yanchun, HU Changqin, YANG Huihua. Application of Multi-Layered Gradient Boosting Decision Trees in Pharmaceutical Classification [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 260-273. |
[7] | HU Jian, XU Kaibin, MAO Yimin. Parallel Density-Based Clustering Algorithm by Using Weighted Grid and Information Entropy [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2094-2107. |
[8] | YIN Ru, MEN Changqian, WANG Wenjian. Model Decision Forest Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 108-116. |
[9] | LI Xingxing, LIU Huafeng, JING Liping. Mixture Rank Matrix Factorization Model [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1114-1122. |
[10] | CHEN Hong, CHEN Jianhu, XIAO Chenglong, WAN Guangxue, XIAO Zhenjiu. Intrusion Detection Method of Multiple Classifiers Under Deep Learning Model [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1123-1133. |
[11] | WANG Xiaoyu, HAN Changlin, HU Xinhao. Densely Connected Convolutional Networks Face Recognition Algorithm Based on Weighted Feature Fusion [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1195-1205. |
[12] | WEI Minghua, ZHENG Jingui. Hierarchical Image Segmentation Based on Self-Adapted Objects and Context Mat-ching Strategy [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(4): 681-692. |
[13] | CHEN Jiayi, ZHAN Yinwei, CAO Huiying, WU Xingda, LI Xiaofei. Adaptive Weighted Median Filtering Algorithm Based on Detection with Trimmed Median [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(3): 505-513. |
[14] | WANG Min, LI Yongming. Relationship Between Weighted Mealy and Weighted Moore Machines over Strong Valuation Monoids [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(8): 1331-1338. |
[15] | WANG Sheng, XIE Hui, ZHANG Fuquan. Semi-Fragile Image Watermarking Algorithm by Using Edge Detection and Zernike Invariant Moments [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 629-641. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/