
Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (9): 2121-2131.DOI: 10.3778/j.issn.1673-9418.2012036
• Graphics and Image • Previous Articles Next Articles
Received:2020-12-10
Revised:2021-04-06
Online:2022-09-01
Published:2021-04-25
About author:YANG Jun, born in 1973, Ph.D., professor. His research interests include deep learning, computer graphics, remote sensing image interpretation, etc.Supported by:通讯作者:
+ E-mail: 314702467@qq.com作者简介:杨军(1973—),男,宁夏吴忠人,博士,教授,主要研究方向为深度学习、计算机图形学、遥感影像解译等。基金资助:CLC Number:
YANG Jun, LEI Xiwen. Co-segmentation of 3D Point Cloud Shape Clusters Based on Weakly Supervised Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2121-2131.
杨军, 雷喜文. 弱监督学习下的三维点云模型簇协同分割[J]. 计算机科学与探索, 2022, 16(9): 2121-2131.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2012036
| Algorithms | mIoU | pIoU |
|---|---|---|
| PointNet[ | 80.4 | 83.6 |
| PointNet++[ | 81.9 | 85.1 |
| DGCNN[ | 82.3 | 85.1 |
| KD-Net[ | 77.4 | 82.3 |
| Capsule-Net[ | 80.9 | 84.9 |
| BAE-NET[ | 79.9 | 84.6 |
| Our algorithm (1 point) | 74.4 | 75.5 |
| Our algorithm (10% points) | 81.6 | 85.0 |
Table 1
| Algorithms | mIoU | pIoU |
|---|---|---|
| PointNet[ | 80.4 | 83.6 |
| PointNet++[ | 81.9 | 85.1 |
| DGCNN[ | 82.3 | 85.1 |
| KD-Net[ | 77.4 | 82.3 |
| Capsule-Net[ | 80.9 | 84.9 |
| BAE-NET[ | 79.9 | 84.6 |
| Our algorithm (1 point) | 74.4 | 75.5 |
| Our algorithm (10% points) | 81.6 | 85.0 |
| Learning method | Algorithms | Airplane (2 690) | Bag (76) | Cap (55) | Car (898) | Chair (3 758) | Earphone (69) | Guitar (787) | Knife (392) |
|---|---|---|---|---|---|---|---|---|---|
| s | PointNet[ | 83.2 | 80.4 | 86.1 | 76.6 | 89.5 | 70.8 | 91.2 | 85.3 |
| s | PointNet++[ | 82.4 | 79.0 | 87.7 | 77.3 | 90.8 | 71.8 | 91.0 | 85.9 |
| s | DGCNN[ | 84.2 | 83.7 | 84.4 | 77.1 | 90.9 | 78.5 | 91.5 | 87.3 |
| s | KD-Net[ | 80.1 | 74.6 | 74.3 | 70.3 | 88.6 | 73.5 | 90.2 | 87.2 |
| w | Capsule-Net[ | 82.8 | 77.8 | 88.0 | 77.3 | 89.6 | 73.5 | 90.7 | 83.9 |
| w | BAE-NET[ | 81.2 | 72.7 | 79.9 | 76.5 | 88.3 | 70.4 | 90.0 | 80.5 |
| w | Our algorithm (1 point) | 75.6 | 74.8 | 79.2 | 66.5 | 87.3 | 63.3 | 89.4 | 84.2 |
| w | Our algorithm (10% points) | 83.7 | 82.6 | 80.6 | 77.8 | 89.8 | 77.3 | 90.9 | 87.6 |
| Learning method | Algorithms | Lamp (1 547) | Laptop (451) | Motorbike (202) | Mug (184) | Pistol (283) | Rocket (66) | Skateboard (152) | Table (5 271) |
| s | PointNet[ | 80.4 | 95.3 | 64.5 | 91.8 | 81.3 | 61.3 | 72.8 | 80.4 |
| s | PointNet++[ | 83.7 | 95.3 | 71.6 | 94.1 | 81.3 | 58.7 | 76.4 | 82.6 |
| s | DGCNN[ | 82.9 | 96.0 | 67.8 | 93.3 | 82.6 | 59.7 | 75.5 | 82.0 |
| s | KD-Net[ | 81.0 | 94.9 | 57.4 | 86.7 | 78.1 | 51.8 | 69.9 | 80.3 |
| w | Capsule-Net[ | 82.8 | 94.8 | 69.1 | 93.2 | 80.9 | 53.1 | 72.9 | 83.0 |
| w | BAE-NET[ | 76.1 | 95.1 | 60.5 | 89.8 | 80.8 | 57.1 | 78.3 | 88.1 |
| w | Our algorithm (1 point) | 78.7 | 94.5 | 49.7 | 90.3 | 76.7 | 46.5 | 71.3 | 62.6 |
| w | Our algorithm (10% points) | 82.5 | 95.8 | 64.7 | 93.5 | 79.8 | 61.9 | 74.9 | 82.9 |
Table 2
| Learning method | Algorithms | Airplane (2 690) | Bag (76) | Cap (55) | Car (898) | Chair (3 758) | Earphone (69) | Guitar (787) | Knife (392) |
|---|---|---|---|---|---|---|---|---|---|
| s | PointNet[ | 83.2 | 80.4 | 86.1 | 76.6 | 89.5 | 70.8 | 91.2 | 85.3 |
| s | PointNet++[ | 82.4 | 79.0 | 87.7 | 77.3 | 90.8 | 71.8 | 91.0 | 85.9 |
| s | DGCNN[ | 84.2 | 83.7 | 84.4 | 77.1 | 90.9 | 78.5 | 91.5 | 87.3 |
| s | KD-Net[ | 80.1 | 74.6 | 74.3 | 70.3 | 88.6 | 73.5 | 90.2 | 87.2 |
| w | Capsule-Net[ | 82.8 | 77.8 | 88.0 | 77.3 | 89.6 | 73.5 | 90.7 | 83.9 |
| w | BAE-NET[ | 81.2 | 72.7 | 79.9 | 76.5 | 88.3 | 70.4 | 90.0 | 80.5 |
| w | Our algorithm (1 point) | 75.6 | 74.8 | 79.2 | 66.5 | 87.3 | 63.3 | 89.4 | 84.2 |
| w | Our algorithm (10% points) | 83.7 | 82.6 | 80.6 | 77.8 | 89.8 | 77.3 | 90.9 | 87.6 |
| Learning method | Algorithms | Lamp (1 547) | Laptop (451) | Motorbike (202) | Mug (184) | Pistol (283) | Rocket (66) | Skateboard (152) | Table (5 271) |
| s | PointNet[ | 80.4 | 95.3 | 64.5 | 91.8 | 81.3 | 61.3 | 72.8 | 80.4 |
| s | PointNet++[ | 83.7 | 95.3 | 71.6 | 94.1 | 81.3 | 58.7 | 76.4 | 82.6 |
| s | DGCNN[ | 82.9 | 96.0 | 67.8 | 93.3 | 82.6 | 59.7 | 75.5 | 82.0 |
| s | KD-Net[ | 81.0 | 94.9 | 57.4 | 86.7 | 78.1 | 51.8 | 69.9 | 80.3 |
| w | Capsule-Net[ | 82.8 | 94.8 | 69.1 | 93.2 | 80.9 | 53.1 | 72.9 | 83.0 |
| w | BAE-NET[ | 76.1 | 95.1 | 60.5 | 89.8 | 80.8 | 57.1 | 78.3 | 88.1 |
| w | Our algorithm (1 point) | 78.7 | 94.5 | 49.7 | 90.3 | 76.7 | 46.5 | 71.3 | 62.6 |
| w | Our algorithm (10% points) | 82.5 | 95.8 | 64.7 | 93.5 | 79.8 | 61.9 | 74.9 | 82.9 |
| Sampling | LocalConv | Energy function | mIoU/% |
|---|---|---|---|
| Replaced with random sampling | √ | √ | 71.2 |
| √ | √ | 56.3 | |
| √ | √ | 67.1 | |
| √ | √ | √ | 81.6 |
Table 3 Comparison of ablated experiments to verify effectiveness of each model component
| Sampling | LocalConv | Energy function | mIoU/% |
|---|---|---|---|
| Replaced with random sampling | √ | √ | 71.2 |
| √ | √ | 56.3 | |
| √ | √ | 67.1 | |
| √ | √ | √ | 81.6 |
| Label Strategy | mIoU | pIoU |
|---|---|---|
| 100% Sample + 100%Pts | 82.19 | 85.10 |
| 100% Sample + 50%Pts | 82.07 | 85.02 |
| 100% Sample + 10%Pts | 81.70 | 85.00 |
Table 4
| Label Strategy | mIoU | pIoU |
|---|---|---|
| 100% Sample + 100%Pts | 82.19 | 85.10 |
| 100% Sample + 50%Pts | 82.07 | 85.02 |
| 100% Sample + 10%Pts | 81.70 | 85.00 |
| [1] | ZHANG J, ZHENG J, WU C, et al. Variational mesh decom-position[J]. ACM Transactions on Graphics, 2012, 31(3): 1-14. |
| [2] | LEV J, LIM J H, OUARTI N. Principal curvature of point cloud for 3D shape recognition[C]// Proceedings of the 2017 IEEE International Conference on Image Processing, Beijing, Sep 17-20, 2017. Piscataway: IEEE, 2017: 610-614. |
| [3] | LI Y, BU R, SUN M, et al. PointCNN: convolution on x-transformed points[C]// Advances in Neural Information Processing Systems 31, Montreal, Dec 3-8, 2018: 820-830. |
| [4] | QI C R, SU H, MO K, et al. PointNet: deep learning on point sets for 3D classification and segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pat-tern Recognition, Honolulu, Jul 21-27, 2017. Washington: IEEE Computer Society, 2017: 77-85. |
| [5] | 党吉圣, 杨军. 多特征融合的三维模型识别与分割[J]. 西安电子科技大学学报, 2020, 47(4): 149-157. |
| DANG J S, YANG J. 3D model recognition and segmen-tation based on multi-feature fusion[J]. Journal of Xidian University, 2020, 47(4): 149-157. | |
| [6] | KALOGERAKIS E, AVERKIOU M, MAJI S, et al. 3D shape segmentation with projective convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 6630-6639. |
| [7] |
HU R Z, FAN L B, LIU L G. Co-segmentation of 3D shapes via subspace clustering[J]. Computer Graphics Forum, 2012, 31(5): 1703-1713.
DOI URL |
| [8] | LAI Y K, HU S M, MARTIN R R, et al. Fast mesh segmen-tation using random walks[C]// Proceedings of the 2008 ACM Symposium on Solid and Physical Modeling, Stony Brook, Jun 2-4, 2008. New York: ACM, 2008: 183-191. |
| [9] |
BENJAMIN W, POLK A W, VISHWANATHAN S V N, et al. Heat walk: robust salient segmentation of non-rigid shapes[J]. Computer Graphics Forum, 2011, 30(7): 2097-2106.
DOI URL |
| [10] |
SHLAFMAN S, TAL A, KATZ S. Metamorphosis of poly-hedral surfaces using decomposition[J]. Computer Graphics Forum, 2010, 21(3): 219-228.
DOI URL |
| [11] | LIU R, ZHANG H. Segmentation of 3D meshes through spectral clustering[C]// Proceedings of the 12th Pacific Con-ference on Computer Graphics and Application, Seoul, Oct 6-8, 2004. Washington: IEEE Computer Society, 2004: 298-305. |
| [12] | HUANG H, KALOGERAKIS E, CHAUDHURI S, et al. Learning local shape descriptors from part correspondences with multi-view convolutional networks[J]. ACM Transac-tions on Graphics, 2017, 37(1). |
| [13] | 杨军, 王顺, 周鹏. 基于深度体素卷积神经网络的三维模型识别分类[J]. 光学学报, 2019, 39(4): 306-316. |
| YANG J, WANG S, ZHOU P. Recognition and classifica-tion for three-dimensional model based on deep voxel convo-lution neural network[J]. Acta Optica Sinica, 2019, 39(4): 306-316. | |
| [14] | WANG Y, ASAFI S, KAICK O V, et al. Active co-analysis of a set of shapes[J]. ACM Transactions on Graphics, 2012, 31(6): 157. |
| [15] |
WU Z, SHOU R, WANG Y, et al. Interactive shape co-seg-mentation via label propagation[J]. Computers & Graphics, 2014, 38(2): 248-254.
DOI URL |
| [16] |
GOLOVINSKIY A, FUNKHOUSER T. Consistent segmen-tation of 3D models[J]. Computers & Graphics, 2009, 33(3): 262-269.
DOI URL |
| [17] | SIDI O, KAICK O V, KLEIMAN Y, et al. Unsupervised co-segmentation of a set of shapes via descriptor space spectral clustering[J]. ACM Transactions on Graphics, 2011, 30(6). |
| [18] |
SHU Z, QI C, XIN S, et al. Unsupervised 3D shape segmen-tation and co-segmentation via deep learning[J]. Computer Aided Geometric Design, 2016, 43(3): 39-52.
DOI URL |
| [19] | KALOGERAKIS E, HERTZMANN A, SINGH K. Learning 3D mesh segmentation and labeling[J]. ACM Transactions on Graphics, 2010, 29(4): 102. |
| [20] | GUO K, ZOU D, CHEN X. 3D mesh labeling via deep con-volutional neural networks[J]. ACM Transactions on Graphics, 2015, 35(1): 3. |
| [21] | QI C R, YI L, SU H, et al. PointNet++: deep hierarchical feature learning on point sets in a metric space[C]// Advan-ces in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5099-5108. |
| [22] | ZHAO Y H, BIRDAL T, DENG H W, et al. 3D point capsule networks[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 1009-1018. |
| [23] | CHEN Z Q, YIN K X, FISHER M, et al. BAE-NET: bran-ched autoencoder for shape co-segmentation[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27 - Nov 2, 2019. Piscataway: IEEE, 2019: 8489-8498. |
| [24] | WEI J C, LIN G S, YAP K H, et al. Multi-path region mining for weakly supervised 3D semantic segmentation on point clouds[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Piscataway: IEEE, 2020: 4384-4393. |
| [25] | ZHU C Y, XU K, CHAUDHURI S, et al. AdaCoSeg: adap-tive shape co-segmentation with group consistency loss[C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, Jun 13-19, 2020. Pis-cataway: IEEE, 2020: 8540-8549. |
| [26] | WANG Y, SUN Y, LIU Z, et al. Dynamic graph CNN for learning on point clouds[J]. ACM Transactions on Graphics, 2019, 38(5): 146. |
| [27] | YI L, KIM V G, CEYLAN D, et al. A scalable active frame-work for region annotation in 3D shape collections[J]. ACM Transactions on Graphics, 2016, 35(6): 210. |
| [28] | KLOKOV R, LEMPITSKY V. Escape from cells: deep Kd-networks for the recognition of 3D point cloud models[C]// Proceedings of the 2017 IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Washington: IEEE Computer Society, 2017: 863-872. |
| [1] | ZHOU Binbin, ZHANG Minling, LIU Xuying. Ternary Error-Correcting Output Codes Based Partial Label Learning Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(9): 1444-1453. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/
