[1] QIN W J, JIA W, HAN F, et al. Superpixel-based and boundary-sensitive convolutional neural network for automated liver segmentation[J]. Physics in Medicine & Biology, 2018, 63(9): 095017.
[2] ROCCO I, ARANDJELOVIC R, SIVIC J. Convolutional neural network architecture for geometric matching[J]. IEEE Trans-actions on Pattern Analysis and Machine Intelligence, 2019, 41(11): 2553-2567.
[3] LV Y S, DUAN Y J, KANG W W, et al. Traffic flow predi-ction with big data: a deep learning approach[J]. IEEE Trans-actions on Intelligent Transportation Systems, 2015, 16(2): 865-873.
[4] FOULADGAR M, PARCHAMI M, ELMASRI R, et al. Sca-lable deep traffic flow neural networks for urban traffic con-gestion prediction[C]//Proceedings of the 2017 International Joint Conference on Neural Networks, Anchorage, May 14-19, 2017. Piscataway: IEEE, 2017: 2251-2258.
[5] PENG S F, SHEN Y Y, ZHU Y M, et al. A frequency-aware spatio-temporal network for traffic flow prediction[C]//LNCS 11447: Proceedings of the 24th International Conference on Database Systems for Advanced Applications, Chiang Mai, Apr 22-25, 2019. Berlin, Heidelberg: Springer, 2019: 697-712.
[6] SONG T F, ZHENG W M, SONG P, et al. EEG emotion reco-gnition using dynamical graph convolutional neural networks[J]. IEEE Transactions on Affective Computing, 2020, 11(3): 532-541.
[7] XU Y, KONG Q Q, HUANG Q, et al. Convolutional gated recurrent neural network incorporating spatial features for audio tagging[C]//Proceedings of the 2017 International Joint Conference on Neural Networks, Anchorage, May 14-19, 2017. Piscataway: IEEE, 2017: 3461-3466.
[8] SOUMYASUNDAR P, FLORENCE R, MARK C. Bayesian graph convolutional neural networks using node copying[C]//Proceedings of the International Conference on Machine Learning, Learning and Reasoning with Graph-Structured Representations Workshop, Long Beach, Jun 6, 2019: 1-6.
[9] YOUNGJOO S, MICHAEL D, PIERRE V, et al. Structured sequence modeling with graph convolutional recurrent networks[J]. arXiv:1612.07659, 2016.
[10] GREGOR K, DANIHELKA I, GRAVES A, et al. DRAW: a recurrent neural network for image generation[C]//Proceed-ings of the 32nd International Conference on Machine Lear-ning, Lille, Jul 6-11, 2015: 1462-1471.
[11] YU B, YIN H T, ZHU Z X. Spatio-temporal graph convolu-tional networks: a deep learning framework for traffic fore-casting[C]//Proceedings of the 27th International Joint Con-ference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3634-3640.
[12] WU Z H, PAN S R, LONG G D, et al. Graph WaveNet for deep spatial-temporal graph modeling[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019: 1907-1913.
[13] XU B B, SHEN H W, CAO Q, et al. Graph wavelet neural network[C]//Proceedings of the 7th International Conference on Learning Representations, New Orleans, May 6-9, 2019: 1-14.
[14] DONNAT C, ZITNIK M, HALLAC D, et al. Learning structural node embeddings via diffusion wavelets[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, Aug 19-23, 2018. New York: ACM, 2018: 1320-1329.
[15] HAMMOND D K, VANDERGHEYNST P, GRIBONVAL R. Wavelets on graphs via spectral graph theory[J]. Applied and Computational Harmonic Analysis, 2011, 30: 129-150.
[16] TREMBLAY N, BORGNAT P. Graph wavelets or multiscale community mining[J]. IEEE Transactions on Signal Proces-sing, 2014, 62(20): 5227-5239.
[17] SUN X Q, FENG Y J. Sensitivity analysis of multilayer perceptron[J]. Chinese Journal of Computers, 2001, 24(9): 951-958.
孙学全, 冯英浚. 多层感知器的灵敏度分析[J]. 计算机学报, 2001, 24(9): 951-958.
[18] LIANG Y X, KE S, ZHANG J B, et al. GeoMAN: multi-level attention networks for geo-sensory time series predic-tion[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence, Stockholm, Jul 13-19, 2018: 3428-3434.
[19] CHEN C, PETTY K F, SKABARDONIS A, et al. Freeway performance measurement system: mining loop detector data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2001(1): 96-102.
[20] GUO S N, LI Y F, FENG N, et al. Attention based spatial-temporal graph convolutional networks for traffic flow fore-casting[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 922-929.
[21] ZIVOT E, WANG J H. Vector autoregressive models for multivariate time series[M]//ZIVOT E, WANG J H. Modeling Financial Time Series with S-Plus?. Berlin, Heidelberg: Springer, 2003. |