Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (11): 2619-2627.DOI: 10.3778/j.issn.1673-9418.2104117
• Theory and Algorithm • Previous Articles Next Articles
LIU Ye1,2, DAI Jianhua1,2,+(), CHEN Jiaolong1,2
Received:
2021-04-30
Revised:
2021-06-15
Online:
2022-11-01
Published:
2021-06-17
About author:
LIU Ye, born in 1996, M.S. candidate. Her research interests include knowledge discovery and artificial intelligence.Supported by:
通讯作者:
+ E-mail: jhdai@hunnu.edu.cn作者简介:
柳叶(1996—),女,江西人,硕士研究生,主要研究方向为知识发现、人工智能。基金资助:
CLC Number:
LIU Ye, DAI Jianhua, CHEN Jiaolong. Attribute Selection via Maximizing Independent-and-Effective Classification Information Ratio[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2619-2627.
柳叶, 代建华, 陈姣龙. 最大化独立有效分类信息率的属性选择[J]. 计算机科学与探索, 2022, 16(11): 2619-2627.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104117
Dataset | Samples | Attributes | Classes |
---|---|---|---|
Arrh | 452 | 206 | 13 |
Car | 1 728 | 6 | 4 |
Chess | 3 196 | 36 | 2 |
Clean1 | 476 | 166 | 2 |
Colon | 62 | 2 000 | 2 |
Glass | 214 | 9 | 7 |
Libras | 360 | 90 | 15 |
Lung | 73 | 326 | 7 |
Lymph | 148 | 18 | 4 |
Musk2 | 707 | 166 | 2 |
Vote | 435 | 16 | 2 |
Wpbc33 | 198 | 32 | 2 |
Zoo | 101 | 16 | 7 |
Table 1 Description of benchmark dataset
Dataset | Samples | Attributes | Classes |
---|---|---|---|
Arrh | 452 | 206 | 13 |
Car | 1 728 | 6 | 4 |
Chess | 3 196 | 36 | 2 |
Clean1 | 476 | 166 | 2 |
Colon | 62 | 2 000 | 2 |
Glass | 214 | 9 | 7 |
Libras | 360 | 90 | 15 |
Lung | 73 | 326 | 7 |
Lymph | 148 | 18 | 4 |
Musk2 | 707 | 166 | 2 |
Vote | 435 | 16 | 2 |
Wpbc33 | 198 | 32 | 2 |
Zoo | 101 | 16 | 7 |
Dataset | Acc/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DISR | NJMIM | GainRatio | MIFS | mRMR | NMIFS | CIFE | MRI | ASECIR | ASIECIR | |
Arrh | 62.42 | 62.85 | 60.42 | 61.74 | 61.74 | 62.85 | 56.21 | 61.08 | 60.86 | 61.30 |
Car | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 | 95.95 | 95.95 |
Chess | 95.78 | 95.90 | 95.62 | 94.49 | 95.96 | 95.59 | 95.84 | 96.06 | 96.28 | 96.28 |
Clean1 | 87.60 | 82.54 | 84.87 | 85.70 | 83.81 | 83.82 | 83.38 | 84.45 | 84.24 | 85.90 |
Colon | 90.24 | 95.24 | 86.9 | 91.67 | 88.33 | 91.90 | 88.81 | 95.00 | 93.33 | 93.33 |
Glass | 57.84 | 57.84 | 56.97 | 58.38 | 55.54 | 54.59 | 57.42 | 57.42 | 57.38 | 57.86 |
Libras | 61.94 | 70.00 | 64.17 | 73.33 | 66.67 | 61.39 | 65.56 | 66.11 | 68.89 | 70.28 |
Lung | 92.14 | 89.11 | 90.54 | 89.11 | 91.79 | 91.96 | 77.14 | 91.96 | 87.68 | 89.46 |
Lymph | 80.29 | 78.33 | 80.43 | 74.33 | 73.57 | 75.71 | 81.14 | 79.14 | 74.05 | 76.33 |
Musk2 | 90.36 | 91.51 | 91.80 | 90.38 | 92.07 | 90.80 | 93.07 | 91.23 | 91.09 | 91.66 |
Vote | 93.31 | 92.63 | 92.18 | 94.01 | 93.56 | 93.56 | 92.41 | 92.40 | 96.55 | 97.02 |
Wpbc33 | 67.24 | 70.26 | 74.32 | 69.74 | 72.71 | 71.82 | 67.79 | 67.79 | 74.79 | 74.79 |
Zoo | 92.88 | 93.57 | 93.10 | 92.65 | 93.79 | 93.79 | 91.72 | 94.71 | 93.55 | 93.57 |
Avg. Acc/% | 81.77 | 82.37 | 81.72 | 82.04 | 81.58 | 81.45 | 80.12 | 82.18 | 82.66 | 83.36 |
Avg. Rank | 5.77 | 5.04 | 6.42 | 5.81 | 5.62 | 6.04 | 6.96 | 5.08 | 5.08 | 3.19 |
Table 2 Classification accuracy with different methods by KNN classifier
Dataset | Acc/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DISR | NJMIM | GainRatio | MIFS | mRMR | NMIFS | CIFE | MRI | ASECIR | ASIECIR | |
Arrh | 62.42 | 62.85 | 60.42 | 61.74 | 61.74 | 62.85 | 56.21 | 61.08 | 60.86 | 61.30 |
Car | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 | 91.03 | 95.95 | 95.95 |
Chess | 95.78 | 95.90 | 95.62 | 94.49 | 95.96 | 95.59 | 95.84 | 96.06 | 96.28 | 96.28 |
Clean1 | 87.60 | 82.54 | 84.87 | 85.70 | 83.81 | 83.82 | 83.38 | 84.45 | 84.24 | 85.90 |
Colon | 90.24 | 95.24 | 86.9 | 91.67 | 88.33 | 91.90 | 88.81 | 95.00 | 93.33 | 93.33 |
Glass | 57.84 | 57.84 | 56.97 | 58.38 | 55.54 | 54.59 | 57.42 | 57.42 | 57.38 | 57.86 |
Libras | 61.94 | 70.00 | 64.17 | 73.33 | 66.67 | 61.39 | 65.56 | 66.11 | 68.89 | 70.28 |
Lung | 92.14 | 89.11 | 90.54 | 89.11 | 91.79 | 91.96 | 77.14 | 91.96 | 87.68 | 89.46 |
Lymph | 80.29 | 78.33 | 80.43 | 74.33 | 73.57 | 75.71 | 81.14 | 79.14 | 74.05 | 76.33 |
Musk2 | 90.36 | 91.51 | 91.80 | 90.38 | 92.07 | 90.80 | 93.07 | 91.23 | 91.09 | 91.66 |
Vote | 93.31 | 92.63 | 92.18 | 94.01 | 93.56 | 93.56 | 92.41 | 92.40 | 96.55 | 97.02 |
Wpbc33 | 67.24 | 70.26 | 74.32 | 69.74 | 72.71 | 71.82 | 67.79 | 67.79 | 74.79 | 74.79 |
Zoo | 92.88 | 93.57 | 93.10 | 92.65 | 93.79 | 93.79 | 91.72 | 94.71 | 93.55 | 93.57 |
Avg. Acc/% | 81.77 | 82.37 | 81.72 | 82.04 | 81.58 | 81.45 | 80.12 | 82.18 | 82.66 | 83.36 |
Avg. Rank | 5.77 | 5.04 | 6.42 | 5.81 | 5.62 | 6.04 | 6.96 | 5.08 | 5.08 | 3.19 |
Dataset | Acc/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DISR | NJMIM | GainRatio | MIFS | mRMR | NMIFS | CIFE | MRI | ASECIR | ASIECIR | |
Arrh | 58.19 | 56.86 | 56.42 | 59.73 | 58.86 | 56.86 | 55.55 | 54.41 | 56.64 | 57.09 |
Car | 95.37 | 95.37 | 94.97 | 95.37 | 95.37 | 95.37 | 95.37 | 95.37 | 96.99 | 96.99 |
Chess | 99.25 | 98.69 | 99.25 | 97.50 | 99.25 | 99.12 | 99.12 | 99.25 | 99.09 | 99.19 |
Clean1 | 82.78 | 81.72 | 79.21 | 82.55 | 83.40 | 80.04 | 79.39 | 80.90 | 81.91 | 83.63 |
Colon | 90.24 | 90.24 | 93.14 | 90.48 | 85.71 | 91.90 | 93.50 | 90.00 | 96.67 | 96.67 |
Glass | 65.8 | 65.80 | 55.15 | 63.07 | 64.46 | 64.46 | 63.51 | 63.48 | 66.26 | 66.26 |
Libras | 56.94 | 57.22 | 62.78 | 68.33 | 61.94 | 58.33 | 59.72 | 67.78 | 70.00 | 66.39 |
Lung | 61.61 | 64.11 | 64.64 | 55.89 | 61.61 | 61.61 | 68.93 | 65.54 | 61.43 | 60.36 |
Lymph | 69.52 | 70.90 | 75.57 | 72.29 | 71.52 | 73.57 | 71.52 | 72.24 | 76.95 | 82.43 |
Musk2 | 89.39 | 89.82 | 90.38 | 88.53 | 88.55 | 88.26 | 90.10 | 89.40 | 90.94 | 90.80 |
Vote | 97.01 | 97.01 | 97.01 | 95.40 | 96.55 | 96.55 | 95.87 | 96.78 | 96.55 | 96.79 |
Wpbc33 | 72.76 | 73.79 | 70.82 | 69.76 | 71.79 | 71.74 | 69.26 | 70.26 | 74.29 | 74.29 |
Zoo | 96.55 | 97.01 | 97.01 | 95.87 | 96.55 | 96.55 | 96.10 | 96.78 | 95.40 | 96.78 |
Avg. Acc/% | 79.65 | 79.89 | 79.72 | 79.60 | 79.66 | 79.57 | 79.84 | 80.17 | 81.78 | 82.13 |
Avg. Rank | 5.42 | 5.46 | 5.31 | 6.92 | 5.65 | 6.42 | 6.69 | 5.85 | 4.23 | 3.04 |
Table 3 Classification accuracy with different methods by C4.5 classifier
Dataset | Acc/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DISR | NJMIM | GainRatio | MIFS | mRMR | NMIFS | CIFE | MRI | ASECIR | ASIECIR | |
Arrh | 58.19 | 56.86 | 56.42 | 59.73 | 58.86 | 56.86 | 55.55 | 54.41 | 56.64 | 57.09 |
Car | 95.37 | 95.37 | 94.97 | 95.37 | 95.37 | 95.37 | 95.37 | 95.37 | 96.99 | 96.99 |
Chess | 99.25 | 98.69 | 99.25 | 97.50 | 99.25 | 99.12 | 99.12 | 99.25 | 99.09 | 99.19 |
Clean1 | 82.78 | 81.72 | 79.21 | 82.55 | 83.40 | 80.04 | 79.39 | 80.90 | 81.91 | 83.63 |
Colon | 90.24 | 90.24 | 93.14 | 90.48 | 85.71 | 91.90 | 93.50 | 90.00 | 96.67 | 96.67 |
Glass | 65.8 | 65.80 | 55.15 | 63.07 | 64.46 | 64.46 | 63.51 | 63.48 | 66.26 | 66.26 |
Libras | 56.94 | 57.22 | 62.78 | 68.33 | 61.94 | 58.33 | 59.72 | 67.78 | 70.00 | 66.39 |
Lung | 61.61 | 64.11 | 64.64 | 55.89 | 61.61 | 61.61 | 68.93 | 65.54 | 61.43 | 60.36 |
Lymph | 69.52 | 70.90 | 75.57 | 72.29 | 71.52 | 73.57 | 71.52 | 72.24 | 76.95 | 82.43 |
Musk2 | 89.39 | 89.82 | 90.38 | 88.53 | 88.55 | 88.26 | 90.10 | 89.40 | 90.94 | 90.80 |
Vote | 97.01 | 97.01 | 97.01 | 95.40 | 96.55 | 96.55 | 95.87 | 96.78 | 96.55 | 96.79 |
Wpbc33 | 72.76 | 73.79 | 70.82 | 69.76 | 71.79 | 71.74 | 69.26 | 70.26 | 74.29 | 74.29 |
Zoo | 96.55 | 97.01 | 97.01 | 95.87 | 96.55 | 96.55 | 96.10 | 96.78 | 95.40 | 96.78 |
Avg. Acc/% | 79.65 | 79.89 | 79.72 | 79.60 | 79.66 | 79.57 | 79.84 | 80.17 | 81.78 | 82.13 |
Avg. Rank | 5.42 | 5.46 | 5.31 | 6.92 | 5.65 | 6.42 | 6.69 | 5.85 | 4.23 | 3.04 |
Dataset | Acc/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DISR | NJMIM | GainRatio | MIFS | mRMR | NMIFS | CIFE | MRI | ASECIR | ASIECIR | |
Arrh | 70.36 | 69.90 | 67.70 | 67.05 | 69.91 | 70.57 | 68.15 | 70.13 | 69.25 | 68.37 |
Car | 83.45 | 83.45 | 83.45 | 83.45 | 83.45 | 83.45 | 83.45 | 83.45 | 83.57 | 83.57 |
Chess | 95.71 | 95.03 | 95.46 | 93.77 | 95.34 | 95.12 | 95.65 | 95.62 | 95.53 | 95.53 |
Clean1 | 81.32 | 79.43 | 82.98 | 81.94 | 81.53 | 81.33 | 80.43 | 80.68 | 82.35 | 82.99 |
Colon | 91.67 | 90.00 | 88.57 | 85.48 | 90.00 | 93.33 | 88.57 | 88.57 | 90.24 | 90.24 |
Glass | 46.28 | 46.75 | 48.14 | 47.71 | 47.73 | 47.73 | 47.73 | 47.71 | 49.16 | 48.20 |
Libras | 63.61 | 60.28 | 61.94 | 69.44 | 61.67 | 57.22 | 63.89 | 63.06 | 64.72 | 66.94 |
Lung | 80.46 | 81.09 | 80.90 | 80.90 | 80.05 | 80.06 | 76.68 | 77.73 | 80.66 | 81.30 |
Lymph | 75.62 | 74.24 | 79.00 | 74.90 | 76.24 | 79.05 | 78.48 | 76.95 | 78.29 | 81.00 |
Musk2 | 88.68 | 90.81 | 82.18 | 86.14 | 91.94 | 91.80 | 88.97 | 90.10 | 90.81 | 91.37 |
Vote | 96.09 | 95.63 | 96.55 | 96.55 | 96.32 | 96.32 | 96.55 | 96.79 | 96.32 | 96.10 |
Wpbc33 | 77.27 | 65.65 | 62.62 | 59.59 | 72.72 | 70.70 | 74.24 | 76.26 | 76.26 | 77.27 |
Zoo | 90.09 | 89.09 | 94.00 | 94.09 | 90.09 | 93.09 | 96.00 | 96.00 | 96.00 | 95.00 |
Avg. Acc/% | 80.05 | 78.57 | 78.73 | 78.54 | 79.77 | 79.98 | 79.91 | 80.23 | 81.01 | 81.38 |
Avg. Rank | 5.73 | 7.58 | 5.85 | 6.81 | 5.96 | 5.27 | 5.65 | 5.35 | 3.73 | 3.08 |
Table 4 Classification accuracy with different methods by SVM classifier
Dataset | Acc/% | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
DISR | NJMIM | GainRatio | MIFS | mRMR | NMIFS | CIFE | MRI | ASECIR | ASIECIR | |
Arrh | 70.36 | 69.90 | 67.70 | 67.05 | 69.91 | 70.57 | 68.15 | 70.13 | 69.25 | 68.37 |
Car | 83.45 | 83.45 | 83.45 | 83.45 | 83.45 | 83.45 | 83.45 | 83.45 | 83.57 | 83.57 |
Chess | 95.71 | 95.03 | 95.46 | 93.77 | 95.34 | 95.12 | 95.65 | 95.62 | 95.53 | 95.53 |
Clean1 | 81.32 | 79.43 | 82.98 | 81.94 | 81.53 | 81.33 | 80.43 | 80.68 | 82.35 | 82.99 |
Colon | 91.67 | 90.00 | 88.57 | 85.48 | 90.00 | 93.33 | 88.57 | 88.57 | 90.24 | 90.24 |
Glass | 46.28 | 46.75 | 48.14 | 47.71 | 47.73 | 47.73 | 47.73 | 47.71 | 49.16 | 48.20 |
Libras | 63.61 | 60.28 | 61.94 | 69.44 | 61.67 | 57.22 | 63.89 | 63.06 | 64.72 | 66.94 |
Lung | 80.46 | 81.09 | 80.90 | 80.90 | 80.05 | 80.06 | 76.68 | 77.73 | 80.66 | 81.30 |
Lymph | 75.62 | 74.24 | 79.00 | 74.90 | 76.24 | 79.05 | 78.48 | 76.95 | 78.29 | 81.00 |
Musk2 | 88.68 | 90.81 | 82.18 | 86.14 | 91.94 | 91.80 | 88.97 | 90.10 | 90.81 | 91.37 |
Vote | 96.09 | 95.63 | 96.55 | 96.55 | 96.32 | 96.32 | 96.55 | 96.79 | 96.32 | 96.10 |
Wpbc33 | 77.27 | 65.65 | 62.62 | 59.59 | 72.72 | 70.70 | 74.24 | 76.26 | 76.26 | 77.27 |
Zoo | 90.09 | 89.09 | 94.00 | 94.09 | 90.09 | 93.09 | 96.00 | 96.00 | 96.00 | 95.00 |
Avg. Acc/% | 80.05 | 78.57 | 78.73 | 78.54 | 79.77 | 79.98 | 79.91 | 80.23 | 81.01 | 81.38 |
Avg. Rank | 5.73 | 7.58 | 5.85 | 6.81 | 5.96 | 5.27 | 5.65 | 5.35 | 3.73 | 3.08 |
[1] | PAWLAK Z. Rough sets[J]. International Journal of Computer & Information Sciences, 1982, 11(5): 341-356. |
[2] | PAWLAK Z. Rough sets and intelligent data analysis[J]. Infor- mation Sciences, 2002, 147(2): 1-12. |
[3] |
NI P, ZHAO S Y, WANG X Z, et al. PARA: a positive-region based attribute reduction accelerator[J]. Information Sciences, 2019, 503: 533-550.
DOI |
[4] |
倪鹏, 刘阳明, 赵素云, 等. 动态模糊粗糙特征选取算法[J]. 计算机科学与探索, 2020, 14(2): 236-243.
DOI |
NI P, LIU Y M, ZHAO S Y, et al. Dynamic fuzzy rough feature selection algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(2): 236-243.
DOI |
|
[5] |
KONG L H, QU W H, YU J D, et al. Distributed feature selection for big data using fuzzy rough sets[J]. IEEE Transactions on Fuzzy Systems, 2020, 28 (5): 846-857.
DOI URL |
[6] |
DAI J H, HU Q H, HU H, et al. Neighbor inconsistent pair selection for attribute reduction by rough set approach[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(2): 937-950.
DOI URL |
[7] |
DAI J H, HU Q H, ZHANG J H, et al. Attribute selection for partially labeled categorical data by rough set approach[J]. IEEE Transactions on Cybernetics, 2017, 47(9): 2460-2471.
DOI PMID |
[8] |
YANG Y Y, CHEN D G, WANG H. Active sample selection based incremental algorithm for attribute reduction with rough sets[J]. IEEE Transactions on Fuzzy Systems, 2016, 25(4): 825-838.
DOI URL |
[9] | WANG C Z, HU Q H, WANG X Z, et al. Feature selection based on neighborhood discrimination index[J]. IEEE Tran-sactions on Neural Networks and Learning Systems, 2018, 29(7): 2986-2999. |
[10] | YANG H, MOODY J. Data visualization and feature selection: new algorithms for nongaussian data[C]// Proceedings of the 12th International Conference on Neural Information Processing Systems, Denver, Nov 29-Dec 4, 1999. Cambridge: MIT Press, 1999: 687-702. |
[11] | MEYER P E, BONTEMPI G. On the use of variable complementarity for feature selection in cancer classification[C]// LNCS 3907:Proceedings of the Workshops on Applications of Evolutionary Computation, Budapest, Apr 10-12, 2006. Berlin, Heidelberg: Springer, 2006: 91-102. |
[12] |
BENNASAR M, HICKS Y, SETCHI R. Feature selection using joint mutual information maximization[J]. Expert Systems with Applications, 2015, 42(22): 8520-8532.
DOI URL |
[13] | 贾平, 代建华, 潘云鹤, 等. 一种基于互信息增益率的新属性约简算法[J]. 浙江大学学报(工学版), 2006, 40(6): 1041- 1044. |
JIA P, DAI J H, PAN Y H, et al. Novel algorithm for attribute reduction based on mutual-information gain ratio[J]. Journal of Zhejiang University (Engineering Science), 2006, 40(6): 1041-1044. | |
[14] |
BATTITI R. Using mutual information for selecting features in supervised neural net learning[J]. IEEE Transactions on Neural Networks, 1994, 5(4): 537-550.
PMID |
[15] |
KWAK N, CHOI C. Input feature selection for classification problems[J]. IEEE Transactions on Neural Networks, 2002, 13(1): 143-159.
DOI PMID |
[16] |
PENG H C, LONG F H, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(8): 1226-1238.
DOI URL |
[17] | LIN D H, TANG X O. Conditional infomax learning: an integrated framework for feature extraction and fusion[C]// LNCS 3951: Proceedings of the 9th European Conference on Computer Vision, Graz, May 7-13, 2006. Berlin, Heidelberg: Springer, 2006: 68-82. |
[18] |
ESTEVEZ P, TESMER M, PEREZ C, et al. Normalized mutual information feature selection[J]. IEEE Transactions on Neural Networks, 2009, 20(2): 189-201.
DOI PMID |
[19] |
WANG J, WEI J M, YANG Z L, et al. Feature selection by maximizing independent classification information[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(4): 828-841.
DOI URL |
[20] | 刘琼, 代建华, 陈姣龙. 区间值数据的代价敏感特征选择[J]. 南京大学学报(自然科学), 2021, 57(1): 121-129. |
LIU Q, DAI J H, CHEN J L. Cost-sensitive feature selection for interval-valued data[J]. Journal of Nanjing University (Natural Science), 2021, 57(1): 121-129. | |
[21] |
钱文彬, 黄琴, 王映龙, 等. 多标记不完备数据的特征选择算法[J]. 计算机科学与探索, 2019, 13(10): 1768-1780.
DOI |
IAN W B, HUANG Q, WANG Y L, et al. Feature selection algorithm in multi-label incomplete data[J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1768-1780.
DOI |
|
[22] | 张文修, 吴伟志, 梁吉业, 等. 粗糙集理论与方法[M]. 北京: 科学出版社, 2001. |
ZHANG W X, WU W Z, LIANG J Y, et al. Rough set theory and method[M]. Beijing: Science Press, 2001. | |
[23] | DEMSAR J. Statistical comparisons of classifiers over multiple data sets[J]. Journal of Machine Learning Research, 2006, 7: 1-30. |
[1] | TANG Chen, ZHAO Jieyu, YE Xulun, ZHENG Yang, YU Shushi. Link Prediction Model for Dynamic Graphs [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(10): 2365-2376. |
[2] | WANG Jinjie, LI Wei. Multi-Objective Feature Selection Method Based on Hybrid MI and PSO Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 83-95. |
[3] | RONG Chuitian, LI Yinyin, WANG Yan. Research on Technologies of Chinese Key-Phrase Automatic Extraction [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(9): 1481-1492. |
[4] | RAO Ya, JIA Xiuyi, LI Tongjun, SHANG Lin. Attribute Reduction Method Based on Inter-Class Separability [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1422-1430. |
[5] | MA Chen, JIANG Gaoxia, WANG Wenjian. Dynamic Mutual Information Feature Selection for Functional Data [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(1): 158-168. |
[6] | XIA Wei, WANG Shanlei, YIN Zidu, YUE Kun. Mutual Information Based Modeling and Completion of Correlations in Knowledge Graphs [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(7): 1064-1074. |
[7] | CHEN Qinxia, LIU Dun, LIANG Decui. Improved AHP Approach Based on Rough Set Theory and Information Entropy [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(3): 484-493. |
[8] | GUO Lele, LIN Youfang, HAN Sheng. Using Ordered Mutual Information to Match Schema with Opaque Column Names and Data Values [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(9): 1389-1397. |
[9] | LI Mengmeng, XU Weihua. Rough Fuzzy Set of Logical and Operation of Variable Precision and Grade Based on Dominance Relation [J]. Journal of Frontiers of Computer Science and Technology, 2016, 10(2): 277-284. |
[10] | ZHANG Wei, MIAO Duoqian, LI Feng. Application of WilsonTh Data Editing for Neighborhood Rough Sets Based Co-training Classification Model [J]. Journal of Frontiers of Computer Science and Technology, 2014, 8(9): 1092-1100. |
[11] | ZHOU Wei, WANG Feng, WANG Chongjun, XIE Junyuan. Mining Core Herbs and Their Combination Rules Using Effect Degree [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 994-1001. |
[12] | WANG Xin, WANG Xizhao, CHEN Jiankai, ZHAI Junhai. Comparative Study on Ordinal Decision Trees [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 1018-1025. |
[13] | YANG Aimin, LIN Jianghao, ZHOU Yongmei. Method on Building Chinese Text Sentiment Lexicon [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(11): 1033-1039. |
[14] | WU Hao1, LI Shijin1+, LIN Lin2, WAN Dingsheng1. Multiple-strategy Combination Based Approach to Band Selection for Hyper-spectral Image Classification* [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(5): 464-472. |
[15] | CHEN Zehua, XIE Gang, XIE Jun, XIE Keming+. BGrM and its Application in Knowledge Reduction [J]. Journal of Frontiers of Computer Science and Technology, 2010, 4(3): 283-288. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/