Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2752-2764.DOI: 10.3778/j.issn.1673-9418.2104115
• Network and Information Security • Previous Articles Next Articles
DONG Xinyu1,2, XIE Bin1,2,3,+(), ZHAO Xusheng1, GAO Xinbao1
Received:
2021-05-08
Revised:
2021-06-25
Online:
2022-12-01
Published:
2021-06-16
About author:
DONG Xinyu, born in 1995, M.S. Her research interests include machine learning and cyber security.Supported by:
董新玉1,2, 解滨1,2,3,+(), 赵旭升1, 高新宝1
通讯作者:
+E-mail: xiebin_hebtu@126.com作者简介:
董新玉(1995—),女,河北石家庄人,硕士,主要研究方向为机器学习、网络安全。基金资助:
CLC Number:
DONG Xinyu, XIE Bin, ZHAO Xusheng, GAO Xinbao. Wireless Network Intrusion Detection Algorithm Based on Multiple Perspectives Hierarchical Clustering[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2752-2764.
董新玉, 解滨, 赵旭升, 高新宝. 多视角层次聚类下的无线网络入侵检测算法[J]. 计算机科学与探索, 2022, 16(12): 2752-2764.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104115
符号记法 | 描述 |
---|---|
对象个数 | |
属性个数 | |
类个数 | |
对象向量 | |
对象集合 | |
基准点集合 | |
聚类簇集合 |
Table 1 Hierarchical clustering symbol expression
符号记法 | 描述 |
---|---|
对象个数 | |
属性个数 | |
类个数 | |
对象向量 | |
对象集合 | |
基准点集合 | |
聚类簇集合 |
坐标 | 坐标 | 坐标 |
---|---|---|
0.433 012 702 | 0.750 | 0 |
0.433 012 702 | -0.375 | 0.649 519 053 |
0.433 012 702 | -0.375 | -0.649 519 053 |
-0.433 012 702 | 0.750 | 0 |
-0.433 012 702 | -0.375 | 0.649 519 053 |
-0.433 012 702 | -0.375 | -0.649 519 053 |
Table 2 Coordinates of 6 datum points
坐标 | 坐标 | 坐标 |
---|---|---|
0.433 012 702 | 0.750 | 0 |
0.433 012 702 | -0.375 | 0.649 519 053 |
0.433 012 702 | -0.375 | -0.649 519 053 |
-0.433 012 702 | 0.750 | 0 |
-0.433 012 702 | -0.375 | 0.649 519 053 |
-0.433 012 702 | -0.375 | -0.649 519 053 |
维度 | 全粒度基准点个数 | 多视角基准点个数 |
---|---|---|
3 | 8 | 6 |
4 | 16 | 12 |
5 | 32 | 24 |
6 | 64 | 48 |
7 | 128 | 96 |
8 | 256 | 192 |
9 | 512 | 384 |
10 | 1 024 | 768 |
11 | 2 048 | 1 536 |
12 | 4 096 | 3 072 |
13 | 8 192 | 6 144 |
14 | 16 384 | 12 288 |
15 | 32 768 | 24 576 |
16 | 65 536 | 49 152 |
17 | 131 072 | 98 304 |
Table 3 Comparison of datum set size between full granularity and multi-perspective methods
维度 | 全粒度基准点个数 | 多视角基准点个数 |
---|---|---|
3 | 8 | 6 |
4 | 16 | 12 |
5 | 32 | 24 |
6 | 64 | 48 |
7 | 128 | 96 |
8 | 256 | 192 |
9 | 512 | 384 |
10 | 1 024 | 768 |
11 | 2 048 | 1 536 |
12 | 4 096 | 3 072 |
13 | 8 192 | 6 144 |
14 | 16 384 | 12 288 |
15 | 32 768 | 24 576 |
16 | 65 536 | 49 152 |
17 | 131 072 | 98 304 |
成分 | 初始特征值 | 提取载荷平方和 | 旋转载荷平方和 | ||||||
---|---|---|---|---|---|---|---|---|---|
总计 | 方差百分比 | 累积 | 总计 | 方差百分比 | 累积 | 总计 | 方差百分比 | 累积 | |
1 | 11.144 | 14.472 | 14.472 | 11.144 | 14.472 | 14.472 | 11.063 | 14.367 | 14.367 |
2 | 9.271 | 12.040 | 26.513 | 9.271 | 12.040 | 26.513 | 6.425 | 8.345 | 22.712 |
3 | 7.302 | 9.483 | 35.996 | 7.302 | 9.483 | 35.996 | 6.186 | 8.033 | 30.745 |
4 | 6.640 | 8.624 | 44.620 | 6.640 | 8.624 | 44.620 | 5.937 | 7.710 | 38.455 |
5 | 5.745 | 7.461 | 52.081 | 5.745 | 7.461 | 52.081 | 5.741 | 7.456 | 45.910 |
6 | 3.703 | 4.809 | 56.890 | 3.703 | 4.809 | 56.890 | 4.858 | 6.309 | 52.219 |
7 | 2.594 | 3.368 | 60.259 | 2.594 | 3.368 | 60.259 | 3.768 | 4.893 | 57.113 |
8 | 2.468 | 3.206 | 63.464 | 2.468 | 3.206 | 63.464 | 2.532 | 3.288 | 60.401 |
9 | 2.147 | 2.788 | 66.252 | 2.147 | 2.788 | 66.252 | 2.440 | 3.169 | 63.570 |
10 | 2.001 | 2.599 | 68.851 | 2.001 | 2.599 | 68.851 | 2.205 | 2.863 | 66.433 |
11 | 1.623 | 2.108 | 70.959 | 1.623 | 2.108 | 70.959 | 2.105 | 2.734 | 69.167 |
12 | 1.408 | 1.829 | 72.788 | 1.408 | 1.829 | 72.788 | 2.003 | 2.601 | 71.769 |
13 | 1.219 | 1.583 | 74.370 | 1.219 | 1.583 | 74.370 | 1.750 | 2.272 | 74.041 |
14 | 1.199 | 1.557 | 75.927 | 1.199 | 1.557 | 75.927 | 1.442 | 1.873 | 75.914 |
15 | 1.024 | 1.330 | 77.258 | 1.024 | 1.330 | 77.258 | 1.031 | 1.339 | 77.253 |
16 | 1.000 | 1.299 | 78.556 | 1.000 | 1.299 | 78.556 | 1.003 | 1.303 | 78.556 |
Table 4
成分 | 初始特征值 | 提取载荷平方和 | 旋转载荷平方和 | ||||||
---|---|---|---|---|---|---|---|---|---|
总计 | 方差百分比 | 累积 | 总计 | 方差百分比 | 累积 | 总计 | 方差百分比 | 累积 | |
1 | 11.144 | 14.472 | 14.472 | 11.144 | 14.472 | 14.472 | 11.063 | 14.367 | 14.367 |
2 | 9.271 | 12.040 | 26.513 | 9.271 | 12.040 | 26.513 | 6.425 | 8.345 | 22.712 |
3 | 7.302 | 9.483 | 35.996 | 7.302 | 9.483 | 35.996 | 6.186 | 8.033 | 30.745 |
4 | 6.640 | 8.624 | 44.620 | 6.640 | 8.624 | 44.620 | 5.937 | 7.710 | 38.455 |
5 | 5.745 | 7.461 | 52.081 | 5.745 | 7.461 | 52.081 | 5.741 | 7.456 | 45.910 |
6 | 3.703 | 4.809 | 56.890 | 3.703 | 4.809 | 56.890 | 4.858 | 6.309 | 52.219 |
7 | 2.594 | 3.368 | 60.259 | 2.594 | 3.368 | 60.259 | 3.768 | 4.893 | 57.113 |
8 | 2.468 | 3.206 | 63.464 | 2.468 | 3.206 | 63.464 | 2.532 | 3.288 | 60.401 |
9 | 2.147 | 2.788 | 66.252 | 2.147 | 2.788 | 66.252 | 2.440 | 3.169 | 63.570 |
10 | 2.001 | 2.599 | 68.851 | 2.001 | 2.599 | 68.851 | 2.205 | 2.863 | 66.433 |
11 | 1.623 | 2.108 | 70.959 | 1.623 | 2.108 | 70.959 | 2.105 | 2.734 | 69.167 |
12 | 1.408 | 1.829 | 72.788 | 1.408 | 1.829 | 72.788 | 2.003 | 2.601 | 71.769 |
13 | 1.219 | 1.583 | 74.370 | 1.219 | 1.583 | 74.370 | 1.750 | 2.272 | 74.041 |
14 | 1.199 | 1.557 | 75.927 | 1.199 | 1.557 | 75.927 | 1.442 | 1.873 | 75.914 |
15 | 1.024 | 1.330 | 77.258 | 1.024 | 1.330 | 77.258 | 1.031 | 1.339 | 77.253 |
16 | 1.000 | 1.299 | 78.556 | 1.000 | 1.299 | 78.556 | 1.003 | 1.303 | 78.556 |
数据类型 | 训练数据集 | 测试数据集 |
---|---|---|
Nomal | 1 633 190 | 530 785 |
Flooding | 48 484 | 8 097 |
Impersonation | 48 522 | 20 079 |
Injection | 65 379 | 16 682 |
Total | 1 795 575 | 575 643 |
Table 5 Data distribution
数据类型 | 训练数据集 | 测试数据集 |
---|---|---|
Nomal | 1 633 190 | 530 785 |
Flooding | 48 484 | 8 097 |
Impersonation | 48 522 | 20 079 |
Injection | 65 379 | 16 682 |
Total | 1 795 575 | 575 643 |
数据集 | 正常数据/条 | 攻击数据/条 | 攻击行为/类 |
---|---|---|---|
100 | 100 | 3 | |
200 | 200 | 5 | |
300 | 300 | 6 | |
400 | 400 | 8 | |
500 | 500 | 10 | |
600 | 600 | 11 | |
700 | 700 | 13 | |
800 | 800 | 14 | |
900 | 900 | 15 | |
1 000 | 1 000 | 16 |
Table 6 Test dataset of experiment 1, 2 and 3
数据集 | 正常数据/条 | 攻击数据/条 | 攻击行为/类 |
---|---|---|---|
100 | 100 | 3 | |
200 | 200 | 5 | |
300 | 300 | 6 | |
400 | 400 | 8 | |
500 | 500 | 10 | |
600 | 600 | 11 | |
700 | 700 | 13 | |
800 | 800 | 14 | |
900 | 900 | 15 | |
1 000 | 1 000 | 16 |
数据集 | 正常数据/条 | 攻击数据/条 | 攻击行为/类 | 未知攻击行为/类 |
---|---|---|---|---|
100 | 100 | 2 | 1 | |
200 | 200 | 3 | 2 | |
300 | 300 | 3 | 3 | |
400 | 400 | 4 | 4 | |
500 | 500 | 5 | 5 | |
600 | 600 | 5 | 6 | |
700 | 700 | 6 | 7 | |
800 | 800 | 6 | 8 | |
900 | 900 | 6 | 9 | |
1 000 | 1 000 | 6 | 10 |
Table 7 Test dataset of experiment 4
数据集 | 正常数据/条 | 攻击数据/条 | 攻击行为/类 | 未知攻击行为/类 |
---|---|---|---|---|
100 | 100 | 2 | 1 | |
200 | 200 | 3 | 2 | |
300 | 300 | 3 | 3 | |
400 | 400 | 4 | 4 | |
500 | 500 | 5 | 5 | |
600 | 600 | 5 | 6 | |
700 | 700 | 6 | 7 | |
800 | 800 | 6 | 8 | |
900 | 900 | 6 | 9 | |
1 000 | 1 000 | 6 | 10 |
[1] | 王婷, 王娜, 崔运鹏, 等. 基于半监督学习的无线网络攻击行为检测优化方法[J]. 计算机研究与发展, 2020, 57(4): 791-802. |
WANG T, WANG N, CUI Y P, et al. The optimization method of wireless network attacks detection based on semi-supervised learning[J]. Journal of Computer Research and Development, 2020, 57(4): 791-802. | |
[2] | 唐成华, 刘鹏程, 汤申生, 等. 基于特征选择的模糊聚类异常入侵行为检测[J]. 计算机研究与发展, 2015, 52(3): 718-728. |
TANG C H, LIU P C, TANG S S, et al. Anomaly intrusion behavior detection based on fuzzy clustering and features selsection[J]. Journal of Computer Research and Develop-ment, 2015, 52(3): 718-728. | |
[3] | 庄池杰, 张斌, 胡军, 等. 基于无监督学习的电力用户异常用电模式检测[J]. 中国电机工程学报, 2016, 36(2): 379-387. |
ZHUANG C J, ZHANG B, HU J, et al. Anomaly detection for power consumption patterns based on unsupervised learning[J]. Proceedings of the CSEE, 2016, 36(2): 379-387. | |
[4] |
JIANG S Y, SONG X Y, WANG H, et al. A clustering-based method for unsupervised intrusion detections[J]. Pattern Recognition Letters, 2005, 27(7): 802-810.
DOI URL |
[5] | 刘卫国, 张志良. 一种全部属性聚类和特征属性聚类相结合的无监督异常检测模型[J]. 铁道学报, 2010, 32(5): 59-64. |
LIU W G, ZHANG Z L. Unsupervised anomaly detection model combining total attributes clustering and feature attributes[J]. Journal of the China Railway Society, 2010, 32(5): 59-64. | |
[6] |
周亚建, 徐晨, 李继国. 基于改进CURE聚类算法的无监督异常检测方法[J]. 通信学报, 2010, 31(7): 18-23.
DOI |
ZHOU Y J, XU C, LI J G. Unsupervised anomaly detection method based on improved CURE clustering algorithm[J]. Journal on Communications, 2010, 31(7): 18-23. | |
[7] | 吴金娥, 王若愚, 段倩倩, 等. 基于反向k近邻过滤异常的群数据异常检测[J]. 上海交通大学学报, 2021, 55(5): 598-606. |
WU J E, WANG R Y, DUAN Q Q, et al. Collective data anomaly detection based on reverse k-nearest neighbor filte-ring[J]. Journal of Shanghai Jiaotong University, 2021, 55(5): 598-606. | |
[8] | 解滨, 董新玉, 梁皓伟. 基于三支动态阈值K-means聚类的入侵检测算法[J]. 郑州大学学报(理学版), 2020, 52(2): 64-70. |
XIE B, DONG X Y, LIANG H W. An algorithm of intru-sion detection based on three-way dynamic threshold K-means clustering[J]. Journal of Zhengzhou University (Natural Science Edition), 2020, 52(2): 64-70. | |
[9] | MANNING C D, RAGHAVAN P, SCHUTZE H. An intro-duction to information retrieval[M]. New York: Cambridge University Press, 2009. |
[10] | 李飞江, 成红红, 钱宇华. 全粒度聚类算法[J]. 南京大学学报(自然科学), 2014, 50(4): 505-516. |
LI F J, CHENG H H, QIAN Y H. Whole-granulation clus-ter algorithm[J]. Journal of Nanjing University (Natural Science), 2014, 50(4): 505-516. | |
[11] |
田有亮, 吴雨龙, 李秋贤. 基于信息论的入侵检测最佳响应方案[J]. 通信学报, 2020, 41(7): 121-130.
DOI |
TIAN Y L, WU Y L, LI Q X. Optimum response scheme of intrusion detection based on information theory[J]. Journal on Communications, 2020, 41(7): 121-130.
DOI |
|
[12] | 周晨曦, 梁循, 齐金山. 基于约束动态更新的半监督层次聚类算法[J]. 自动化学报, 2015, 41(7): 1253-1263. |
ZHOU C X, LIANG X, QI J S. A semi-supervised agglo-merative hierarchical clustering method based on dyna-mically updating constraints[J]. Acta Automatica Sinica, 2015, 41(7): 1253-1263. | |
[13] | 关健, 刘大昕. 基于主成分分析的无监督异常检测[J]. 计算机研究与发展, 2004, 41(9): 1474-1480. |
GUAN J, LIU D X. Unsupervised anomaly detection based on principal components analysis[J]. Journal of Computer Research and Development, 2004, 41(9): 1474-1480. | |
[14] | KOLIAS C, KAMBOURAKIS G, STAVROU A, et al. Intru-sion detection in 802.11 networks: empirical evaluation of threats and a public dataset[J]. IEEE Communications Sur-veys & Tutorials, 2016, 18(1): 184-208. |
[15] | 贺亮, 徐正国, 李赟, 等. 非数值化特征的条件概率区域划分(CZT)编码方法[J]. 计算机应用研究, 2020, 37(5): 1400-1405. |
HE L, XU Z G, LI Y, et al. Conditional-probability zone transformation coding for categorical features[J]. Applica-tion Research of Computers, 2020, 37(5): 1400-1405. | |
[16] | 陈翔, 王莉萍, 顾庆, 等. 跨项目软件缺陷预测方法研究综述[J]. 计算机学报, 2018, 41(1): 254-274. |
CHEN X, WANG L P, GU Q, et al. A survey on cross-project software defect prediction methods[J]. Chinese Journal of Computers, 2018, 41(1): 254-274. |
[1] | XU Jia, MO Xiaokun, YU Ge, LYU Pin, WEI Tingting. SQL-Detector: SQL Plagiarism Detection Technique Based on Coding Features [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2030-2040. |
[2] | WU Xiaodong, LIU Jinghao, JIN Jie, MAO Siping. DNN Intrusion Detection Model Based on DT and PCA [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1450-1458. |
[3] | XU Xudong, ZHANG Zhixiang, ZHANG Xian. Message Clustering Method for Private Binary Protocol [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 958-965. |
[4] | YANG Jie, TANG Yachun, TAN Daojun, LIU Xiaobing. Intrusion Detection Method of Multi-channel Autoencoder Deep Learning [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(12): 2050-2060. |
[5] | WANG Xiaodong, ZHAO Yining, XIAO Haili, WANG Xiaoning, CHI Xuebin. Research on Anomaly Detection System of Online Multi-node Log Flow [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(11): 1828-1837. |
[6] | WAN Jing, WU Fan, HE Yunbin, LI Song. Clustering Algorithm for High-Dimensional Data Under New Dimensionality Reduc-tion Criteria [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(1): 96-107. |
[7] | CHEN Hong, CHEN Jianhu, XIAO Chenglong, WAN Guangxue, XIAO Zhenjiu. Intrusion Detection Method of Multiple Classifiers Under Deep Learning Model [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1123-1133. |
[8] | DING Panpan, SONG Guozhi, ZHAO Chenglong, ZHOU Yijie. Research on Distribution of Wireless Routers in Hybrid Three-Dimensional Wireless Network-on-Chip [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1864-1872. |
[9] | LIANG Lingyu, SUN Mingkun, HE Wei, LI Fengrong. Head Pose Estimation Method of Bagging-SVM Integrated Classifier [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(11): 1935-1944. |
[10] | WANG Yi, FENG Xiaonian, QIAN Tieyun, ZHU Hui3, ZHOU Jing. CNN and LSTM Deep Network Based Intrusion Detection for Malicious Users [J]. Journal of Frontiers of Computer Science and Technology, 2018, 12(4): 575-585. |
[11] | LIU Chao, XU Yabin, WU Zhuang. Method for Rapid Detecting Micro-Blog Communities [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(9): 1100-1107. |
[12] | ZHANG Yonghui, LI Chuan, TANG Changjie, LI Yanmei. Information Networks Community Trend Prediction Based on Structure Analysis [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(4): 403-409. |
[13] | CHEN Lijuan, LIU Zhihong, ZHANG Teng, TIAN Senping, LU Wei. Secure Communication in Stochastic Wireless Networks with the Aid of Jamming [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(3): 338-351. |
[14] | ZHANG Chengbo, WANG Xingwei, HUANG Min. ABC Supported Handoff Decision Scheme with Multi-Objective Genetic Optimization [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(8): 704-717. |
[15] | CAI Zhiping, LIU Shuhao, WANG Han, CAO Jienan, XU Ming. High Performance Parallel Intrusion Detection Algorithms and Framework [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(4): 289-303. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/