Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (12): 2797-2808.DOI: 10.3778/j.issn.1673-9418.2104006
• Artificial Intelligence • Previous Articles Next Articles
CHEN Da1, YOU Xiaoming1,+(), LIU Sheng2
Received:
2021-04-01
Revised:
2021-06-07
Online:
2022-12-01
Published:
2021-06-15
About author:
CHEN Da, born in 1997, M.S. candidate. His research interests include intelligent algorithm, path planning of mobile robot and embedded system.Supported by:
通讯作者:
+E-mail: yxm6301@163.com作者简介:
陈达(1997—),男,江苏盐城人,硕士研究生,主要研究方向为智能算法、移动机器人路径规划、嵌入式系统。基金资助:
CLC Number:
CHEN Da, YOU Xiaoming, LIU Sheng. Dual Ant Colony Algorithm Based on Backtracking Migration and Matching Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(12): 2797-2808.
陈达, 游晓明, 刘升. 引入特征迁移和匹配学习的双蚁型蚁群算法[J]. 计算机科学与探索, 2022, 16(12): 2797-2808.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2104006
数据集名称 | 最优解 | 平均误差/% | |
---|---|---|---|
eil51 | 426 | 1 | 0.71 |
2 | 0.52 | ||
3 | 0.23 | ||
4 | 0.41 | ||
5 | 0.53 | ||
6 | 0.66 |
Table 1 Statistics on influence of value of C on accuracy
数据集名称 | 最优解 | 平均误差/% | |
---|---|---|---|
eil51 | 426 | 1 | 0.71 |
2 | 0.52 | ||
3 | 0.23 | ||
4 | 0.41 | ||
5 | 0.53 | ||
6 | 0.66 |
算法 | 时间复杂度 |
---|---|
BMACS | |
DBA | |
SA-MMAS | |
FWA | |
CFWA | |
ACS |
Table 2 Comparison of complexity of different algorithms
算法 | 时间复杂度 |
---|---|
BMACS | |
DBA | |
SA-MMAS | |
FWA | |
CFWA | |
ACS |
Level | |||||
---|---|---|---|---|---|
Level1 | 1 | 1 | 0.1 | 0.1 | 0.6 |
Level2 | 2 | 2 | 0.2 | 0.2 | 0.7 |
Level3 | 3 | 3 | 0.3 | 0.3 | 0.8 |
Level4 | 4 | 4 | 0.4 | 0.4 | 0.9 |
Table 3 Experimental factors and levels of BMACS
Level | |||||
---|---|---|---|---|---|
Level1 | 1 | 1 | 0.1 | 0.1 | 0.6 |
Level2 | 2 | 2 | 0.2 | 0.2 | 0.7 |
Level3 | 3 | 3 | 0.3 | 0.3 | 0.8 |
Level4 | 4 | 4 | 0.4 | 0.4 | 0.9 |
NO. | Avg | |||||
---|---|---|---|---|---|---|
1 | 1 | 1 | 0.1 | 0.1 | 0.6 | 576.00 |
2 | 1 | 2 | 0.2 | 0.2 | 0.7 | 552.35 |
3 | 1 | 3 | 0.3 | 0.3 | 0.8 | 547.25 |
4 | 1 | 4 | 0.4 | 0.4 | 0.9 | 546.15 |
5 | 2 | 1 | 0.2 | 0.3 | 0.9 | 557.30 |
6 | 2 | 2 | 0.1 | 0.4 | 0.8 | 554.45 |
7 | 2 | 3 | 0.4 | 0.1 | 0.7 | 544.65 |
8 | 2 | 4 | 0.3 | 0.2 | 0.6 | 547.20 |
9 | 3 | 1 | 0.3 | 0.4 | 0.7 | 570.25 |
10 | 3 | 2 | 0.4 | 0.3 | 0.6 | 560.15 |
11 | 3 | 3 | 0.1 | 0.2 | 0.9 | 546.65 |
12 | 3 | 4 | 0.2 | 0.1 | 0.8 | 548.65 |
13 | 4 | 1 | 0.4 | 0.2 | 0.8 | 563.55 |
14 | 4 | 2 | 0.3 | 0.1 | 0.9 | 561.35 |
15 | 4 | 3 | 0.2 | 0.4 | 0.6 | 552.30 |
16 | 4 | 4 | 0.1 | 0.3 | 0.7 | 545.95 |
Table 4 Orthogonal test scheme and test results of BMACS
NO. | Avg | |||||
---|---|---|---|---|---|---|
1 | 1 | 1 | 0.1 | 0.1 | 0.6 | 576.00 |
2 | 1 | 2 | 0.2 | 0.2 | 0.7 | 552.35 |
3 | 1 | 3 | 0.3 | 0.3 | 0.8 | 547.25 |
4 | 1 | 4 | 0.4 | 0.4 | 0.9 | 546.15 |
5 | 2 | 1 | 0.2 | 0.3 | 0.9 | 557.30 |
6 | 2 | 2 | 0.1 | 0.4 | 0.8 | 554.45 |
7 | 2 | 3 | 0.4 | 0.1 | 0.7 | 544.65 |
8 | 2 | 4 | 0.3 | 0.2 | 0.6 | 547.20 |
9 | 3 | 1 | 0.3 | 0.4 | 0.7 | 570.25 |
10 | 3 | 2 | 0.4 | 0.3 | 0.6 | 560.15 |
11 | 3 | 3 | 0.1 | 0.2 | 0.9 | 546.65 |
12 | 3 | 4 | 0.2 | 0.1 | 0.8 | 548.65 |
13 | 4 | 1 | 0.4 | 0.2 | 0.8 | 563.55 |
14 | 4 | 2 | 0.3 | 0.1 | 0.9 | 561.35 |
15 | 4 | 3 | 0.2 | 0.4 | 0.6 | 552.30 |
16 | 4 | 4 | 0.1 | 0.3 | 0.7 | 545.95 |
参数 | |||||
---|---|---|---|---|---|
2 222.35 | 2 267.70 | 2 223.65 | 2 231.25 | 2 236.25 | |
2 203.60 | 2 228.30 | 2 210.60 | 2 209.75 | 2 213.20 | |
2 225.70 | 2 190.85 | 2 226.05 | 2 210.65 | 2 213.90 | |
2 223.15 | 2 187.95 | 2 214.50 | 2 223.15 | 2 211.45 | |
555.59 | 566.93 | 555.91 | 557.81 | 559.06 | |
550.90 | 557.08 | 552.65 | 552.44 | 553.30 | |
556.43 | 547.71 | 556.51 | 552.66 | 553.48 | |
555.79 | 546.99 | 553.63 | 555.79 | 552.86 | |
556.43 | 566.93 | 556.51 | 557.81 | 559.06 | |
550.90 | 546.99 | 552.65 | 552.44 | 552.86 | |
15.53 | 19.94 | 3.86 | 5.37 | 6.20 | |
Level2 | Level4 | Level2 | Level2 | Level4 |
Table 5 Analysis of test results of BMACS
参数 | |||||
---|---|---|---|---|---|
2 222.35 | 2 267.70 | 2 223.65 | 2 231.25 | 2 236.25 | |
2 203.60 | 2 228.30 | 2 210.60 | 2 209.75 | 2 213.20 | |
2 225.70 | 2 190.85 | 2 226.05 | 2 210.65 | 2 213.90 | |
2 223.15 | 2 187.95 | 2 214.50 | 2 223.15 | 2 211.45 | |
555.59 | 566.93 | 555.91 | 557.81 | 559.06 | |
550.90 | 557.08 | 552.65 | 552.44 | 553.30 | |
556.43 | 547.71 | 556.51 | 552.66 | 553.48 | |
555.79 | 546.99 | 553.63 | 555.79 | 552.86 | |
556.43 | 566.93 | 556.51 | 557.81 | 559.06 | |
550.90 | 546.99 | 552.65 | 552.44 | 552.86 | |
15.53 | 19.94 | 3.86 | 5.37 | 6.20 | |
Level2 | Level4 | Level2 | Level2 | Level4 |
TSP实例 | 标准最优解 | 算法 | 最优解 | 最差解 | 平均解 | 误差率/% | 最优迭代数 |
---|---|---|---|---|---|---|---|
eil51 | 426 | BMACS | 426 | 428 | 427 | 0 | 55 |
ACS-3opt | 426 | 429 | 428 | 0 | 83 | ||
ACS | 426 | 435 | 428 | 0 | 309 | ||
eil76 | 538 | BMACS | 538 | 543 | 540 | 0 | 37 |
ACS-3opt | 538 | 547 | 541 | 0 | 175 | ||
ACS | 538 | 549 | 545 | 0 | 1 046 | ||
rat99 | 1 211 | BMACS | 1 211 | 1 221 | 1 215 | 0 | 220 |
ACS-3opt | 1 211 | 1 229 | 1 219 | 0 | 279 | ||
ACS | 1 211 | 1 231 | 1 220 | 0 | 319 | ||
kroA100 | 21 282 | BMACS | 21 282 | 21 734 | 21 313 | 0 | 396 |
ACS-3opt | 21 282 | 21 833 | 21 366 | 0 | 1 231 | ||
ACS | 21 282 | 21 952 | 21 441 | 0 | 1 672 | ||
kroB100 | 22 141 | BMACS | 22 141 | 22 330 | 22 251 | 0 | 1 479 |
ACS-3opt | 22 236 | 22 351 | 22 316 | 0.429 | 960 | ||
ACS | 22 272 | 22 387 | 22 325 | 0.592 | 1 887 | ||
ch130 | 6 110 | BMACS | 6 110 | 6 310 | 6 201 | 0 | 697 |
ACS-3opt | 6 144 | 6 364 | 6 222 | 0.556 | 460 | ||
ACS | 6 148 | 6 389 | 6 227 | 0.622 | 1 920 | ||
kroB150 | 26 130 | BMACS | 26 130 | 26 728 | 26 431 | 0 | 1 287 |
ACS-3opt | 26 154 | 26 809 | 26 471 | 0.092 | 629 | ||
ACS | 26 178 | 26 855 | 26 589 | 0.184 | 1 870 | ||
kroA150 | 26 524 | BMACS | 26 550 | 27 204 | 26 889 | 0.098 | 1 252 |
ACS-3opt | 26 619 | 27 315 | 27 012 | 0.358 | 1 498 | ||
ACS | 26 643 | 27 520 | 27 133 | 0.449 | 1 989 | ||
kroB200 | 29 437 | BMACS | 29 610 | 30 193 | 29 941 | 0.588 | 1 595 |
ACS-3opt | 29 837 | 30 435 | 30 036 | 1.359 | 1 961 | ||
ACS | 29 874 | 30 562 | 30 175 | 1.485 | 1 105 | ||
kroA200 | 29 368 | BMACS | 29 401 | 29 844 | 29 677 | 0.112 | 701 |
ACS-3opt | 29 472 | 29 926 | 29 614 | 0.354 | 1 412 | ||
ACS | 29 498 | 30 049 | 29 501 | 0.443 | 1 231 | ||
tsp225 | 3 916 | BMACS | 3 920 | 4 034 | 3 972 | 0.102 | 309 |
ACS-3opt | 3 935 | 4 065 | 4 011 | 0.485 | 1 775 | ||
ACS | 3 944 | 4 145 | 4 031 | 0.715 | 1 883 | ||
a280 | 2 579 | BMACS | 2 587 | 2 701 | 2 638 | 0.310 | 1 081 |
ACS-3opt | 2 602 | 2 710 | 2 641 | 0.892 | 1 768 | ||
ACS | 2 604 | 2 715 | 2 654 | 0.969 | 1 444 | ||
lin318 | 42 029 | BMACS | 42 361 | 43 573 | 43 065 | 0.790 | 1 736 |
ACS-3opt | 42 939 | 44 094 | 43 634 | 2.165 | 1 291 | ||
ACS | 43 008 | 44 399 | 43 667 | 2.329 | 1 478 | ||
fl417 | 11 861 | BMACS | 11 965 | 12 254 | 12 106 | 0.877 | 1 941 |
ACS-3opt | 12 010 | 12 302 | 12 183 | 1.256 | 1 886 | ||
ACS | 12 057 | 12 347 | 12 213 | 1.652 | 1 877 |
Table 6 Performance comparison of ACS、ACS+3opt、BMACS in different test sets
TSP实例 | 标准最优解 | 算法 | 最优解 | 最差解 | 平均解 | 误差率/% | 最优迭代数 |
---|---|---|---|---|---|---|---|
eil51 | 426 | BMACS | 426 | 428 | 427 | 0 | 55 |
ACS-3opt | 426 | 429 | 428 | 0 | 83 | ||
ACS | 426 | 435 | 428 | 0 | 309 | ||
eil76 | 538 | BMACS | 538 | 543 | 540 | 0 | 37 |
ACS-3opt | 538 | 547 | 541 | 0 | 175 | ||
ACS | 538 | 549 | 545 | 0 | 1 046 | ||
rat99 | 1 211 | BMACS | 1 211 | 1 221 | 1 215 | 0 | 220 |
ACS-3opt | 1 211 | 1 229 | 1 219 | 0 | 279 | ||
ACS | 1 211 | 1 231 | 1 220 | 0 | 319 | ||
kroA100 | 21 282 | BMACS | 21 282 | 21 734 | 21 313 | 0 | 396 |
ACS-3opt | 21 282 | 21 833 | 21 366 | 0 | 1 231 | ||
ACS | 21 282 | 21 952 | 21 441 | 0 | 1 672 | ||
kroB100 | 22 141 | BMACS | 22 141 | 22 330 | 22 251 | 0 | 1 479 |
ACS-3opt | 22 236 | 22 351 | 22 316 | 0.429 | 960 | ||
ACS | 22 272 | 22 387 | 22 325 | 0.592 | 1 887 | ||
ch130 | 6 110 | BMACS | 6 110 | 6 310 | 6 201 | 0 | 697 |
ACS-3opt | 6 144 | 6 364 | 6 222 | 0.556 | 460 | ||
ACS | 6 148 | 6 389 | 6 227 | 0.622 | 1 920 | ||
kroB150 | 26 130 | BMACS | 26 130 | 26 728 | 26 431 | 0 | 1 287 |
ACS-3opt | 26 154 | 26 809 | 26 471 | 0.092 | 629 | ||
ACS | 26 178 | 26 855 | 26 589 | 0.184 | 1 870 | ||
kroA150 | 26 524 | BMACS | 26 550 | 27 204 | 26 889 | 0.098 | 1 252 |
ACS-3opt | 26 619 | 27 315 | 27 012 | 0.358 | 1 498 | ||
ACS | 26 643 | 27 520 | 27 133 | 0.449 | 1 989 | ||
kroB200 | 29 437 | BMACS | 29 610 | 30 193 | 29 941 | 0.588 | 1 595 |
ACS-3opt | 29 837 | 30 435 | 30 036 | 1.359 | 1 961 | ||
ACS | 29 874 | 30 562 | 30 175 | 1.485 | 1 105 | ||
kroA200 | 29 368 | BMACS | 29 401 | 29 844 | 29 677 | 0.112 | 701 |
ACS-3opt | 29 472 | 29 926 | 29 614 | 0.354 | 1 412 | ||
ACS | 29 498 | 30 049 | 29 501 | 0.443 | 1 231 | ||
tsp225 | 3 916 | BMACS | 3 920 | 4 034 | 3 972 | 0.102 | 309 |
ACS-3opt | 3 935 | 4 065 | 4 011 | 0.485 | 1 775 | ||
ACS | 3 944 | 4 145 | 4 031 | 0.715 | 1 883 | ||
a280 | 2 579 | BMACS | 2 587 | 2 701 | 2 638 | 0.310 | 1 081 |
ACS-3opt | 2 602 | 2 710 | 2 641 | 0.892 | 1 768 | ||
ACS | 2 604 | 2 715 | 2 654 | 0.969 | 1 444 | ||
lin318 | 42 029 | BMACS | 42 361 | 43 573 | 43 065 | 0.790 | 1 736 |
ACS-3opt | 42 939 | 44 094 | 43 634 | 2.165 | 1 291 | ||
ACS | 43 008 | 44 399 | 43 667 | 2.329 | 1 478 | ||
fl417 | 11 861 | BMACS | 11 965 | 12 254 | 12 106 | 0.877 | 1 941 |
ACS-3opt | 12 010 | 12 302 | 12 183 | 1.256 | 1 886 | ||
ACS | 12 057 | 12 347 | 12 213 | 1.652 | 1 877 |
算法 | eil51 | eil76 | kroA100 | kroB150 | kroA200 | lin318 |
---|---|---|---|---|---|---|
BMACS | 426 | 538 | 21 282 | 26 130 | 29 401 | 42 361 |
RBIFWA[ | 426 | — | 21 282 | — | — | — |
SGSAA[ | 426 | 538 | — | — | — | — |
GA-SAC[ | 426 | 538 | 21 282 | — | — | 42 329 |
IADUACO[ | 427 | 538 | — | — | — | — |
PACO-3OPT[ | 426 | 538 | 21 282 | — | 29 533 | — |
EDHACO[ | 426 | 538 | 21 282 | 26 328 | 29 694 | 43 291 |
PCCACO[ | 426 | 538 | 21 282 | 26 130 | 29 393 | 42 461 |
DSMO[ | 426 | 538 | 21 298 | 26 601 | 30 481 | 44 118 |
WWO[ | 427 | 557 | 21 668 | — | 31 064 | — |
Table 7 Comparison between BMACS algorithm and other algorithms
算法 | eil51 | eil76 | kroA100 | kroB150 | kroA200 | lin318 |
---|---|---|---|---|---|---|
BMACS | 426 | 538 | 21 282 | 26 130 | 29 401 | 42 361 |
RBIFWA[ | 426 | — | 21 282 | — | — | — |
SGSAA[ | 426 | 538 | — | — | — | — |
GA-SAC[ | 426 | 538 | 21 282 | — | — | 42 329 |
IADUACO[ | 427 | 538 | — | — | — | — |
PACO-3OPT[ | 426 | 538 | 21 282 | — | 29 533 | — |
EDHACO[ | 426 | 538 | 21 282 | 26 328 | 29 694 | 43 291 |
PCCACO[ | 426 | 538 | 21 282 | 26 130 | 29 393 | 42 461 |
DSMO[ | 426 | 538 | 21 298 | 26 601 | 30 481 | 44 118 |
WWO[ | 427 | 557 | 21 668 | — | 31 064 | — |
TSP实例 | 算法 | 最优解 | 平均解 | 迭代次数 |
---|---|---|---|---|
kroA100 | ACS+迁移 | 21 282 | 21 282 | 396 |
ACS | 22 272 | 1 672 | ||
ACS+迁移 | 21 282 | 21 282 | 500 | |
ACS | 22 236 | 1 231 | ||
ACS+迁移 | 21 282 | 21 282 | 461 | |
ACS | 21 431 | 1 336 |
Table 8 Performance comparison
TSP实例 | 算法 | 最优解 | 平均解 | 迭代次数 |
---|---|---|---|---|
kroA100 | ACS+迁移 | 21 282 | 21 282 | 396 |
ACS | 22 272 | 1 672 | ||
ACS+迁移 | 21 282 | 21 282 | 500 | |
ACS | 22 236 | 1 231 | ||
ACS+迁移 | 21 282 | 21 282 | 461 | |
ACS | 21 431 | 1 336 |
TSP实例 | 标准最优解 | 算法 | 平均解 | 平均误差率/% |
---|---|---|---|---|
lin318 | 42 029 | ACS+回溯 | 42 565 | 1.28 |
ACS | 43 008 | 2.30 | ||
fl417 | 11 861 | ACS+回溯 | 11 990 | 1.09 |
ACS | 12 057 | 1.32 |
Table 9 Contrastive analysis of matching learning mechanism
TSP实例 | 标准最优解 | 算法 | 平均解 | 平均误差率/% |
---|---|---|---|---|
lin318 | 42 029 | ACS+回溯 | 42 565 | 1.28 |
ACS | 43 008 | 2.30 | ||
fl417 | 11 861 | ACS+回溯 | 11 990 | 1.09 |
ACS | 12 057 | 1.32 |
[1] | DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[J]. IEEE Tran-sactions on Systems, Man, and Cybernetics, Part B: Cyber-netics, 1996, 26(1): 29-41. |
[2] |
DORIGO M, BIRATTARI M, STUTZLE T. Ant colony optimization[J]. IEEE Computational Intelligence Magazine, 2006, 1(4): 28-39.
DOI URL |
[3] |
DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman pro-blem[J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 53-66.
DOI URL |
[4] |
STUTZLE T, HOOS H H. MAX-MIN ant system[J]. Future Generation Computer Systems, 2000, 16(8): 889-914.
DOI URL |
[5] | 周頔. 基于多种群多策略的混合遗传-蚁群算法及应用研究[J]. 计算机与数字工程, 2018, 46(12): 2390-2394. |
ZHOU D. Study on a hybrid genetic-ant colony algorithm based on multi-population and multi-strategy and its appli-cation[J]. Computer and Digital Engineering, 2018, 46(12): 2390-2394. | |
[6] | 高健, 顾垚江. 基于拥挤度的改进蚁群算法[J]. 测控技术, 2019, 38(3): 11-15. |
GAO J, GU Y J. An improved ant colony algorithm based on crowding degree[J]. Measurement and Control Techno-logy, 2019, 38(3): 11-15. | |
[7] |
卜冠南, 刘建华, 姜磊, 等. 一种自适应分组的蚁群算法[J]. 计算机工程与应用, 2021, 57(6): 67-73.
DOI |
BU G N, LIU J H, JIANG L, et al. An adaptive grouping ant colony algorithm[J]. Computer Engineering and Applica-tions, 2021, 57(6): 67-73. | |
[8] |
许凯波, 鲁海燕, 程毕芸, 等. 求解TSP的改进信息素二次更新与局部优化蚁群算法[J]. 计算机应用, 2017, 37(6): 1686-1691.
DOI |
XU K B, LU H Y, CHENG B Y, et al. Ant colony opti-mization algorithm based on improved pheromones double updating and local optimization for solving TSP[J]. Journal of Computer Applications, 2017, 37(6): 1686-1691. | |
[9] | 王铁, 胡泓. 基于K-means信息挥发速率动态调整的改进蚁群算法[J]. 机械与电子, 2020, 38(2): 25-29. |
WANG T, HU H. An improved ant colony algorithm based on K-means and dynamic volatility rate adjustment strategy[J]. Machinery and Electronics, 2020, 38(2): 25-29. | |
[10] | 孟祥萍, 片兆宇, 沈中玉, 等. 基于方向信息素协调的蚁群算法[J]. 控制与决策, 2013, 28(5): 782-786. |
MENG X P, PIAN Z Y, SHEN Z Y, et al. Ant colony algorithm based on directional pheromone coordination[J]. Control and Decision, 2013, 28(5): 782-786. | |
[11] | 尚宝平, 焦建强, 裴杰, 等. 一种求解TSP问题的多策略改进蚁群算法[J]. 数学的实践与认识, 2019, 49(2): 215-224. |
SHANG B P, JIAO J Q, PEI J, et al. Research on an imp-roved multi-strategy ant colony algorithm for TSP problem[J]. Mathematics in Practice and Theory, 2019, 49(2): 215-224. | |
[12] | 吴俊斌, 吴晟, 吴兴蛟. 一种用于求解TSP问题的随机最佳插入烟花算法[J]. 计算机工程与科学, 2020, 42(11): 2080-2087. |
WU J B, WU S, WU X J. A randomized best insertion fire-works algorithm for solving TSP problem[J]. Computer Engi-neering and Science, 2020, 42(11): 2080-2087. | |
[13] | 陈科胜, 鲜思东, 郭鹏. 求解旅行商问题的自适应升温模拟退火算法[J]. 控制理论与应用, 2021, 38(2): 245-254. |
CHEN K S, XIAN S D, GUO P. Adaptive temperature rising simulated annealing algorithm for traveling salesman pro-blem[J]. Control Theory & Applications, 2021, 38(2): 245-254. | |
[14] |
陈斌, 刘卫国. 基于SAC模型的改进遗传算法求解TSP问题[J]. 计算机科学与探索, 2021, 15(9): 1680-1693.
DOI URL |
CHEN B, LIU W G. SAC model based improved genetic algorithm for solving TSP[J]. Journal of Frontiers of Com-puter Science and Technology, 2021, 15(9): 1680-1693. | |
[15] |
陈颖杰, 高茂庭. 基于信息素初始分配和动态更新的蚁群算法[J]. 计算机工程与应用, 2022, 58(2): 95-101.
DOI |
CHEN Y J, GAO M T. Pheromone initialization and dyna-mic update based ant colony algorithm[J]. Computer Enginee-ring and Applications, 2022, 58(2): 95-101. | |
[16] |
GÜlCÜ S, MAHI M, BAYKAN Ö K. et al. A parallel co-operative hybrid method based on ant colony optimization and 3-opt algorithm for solving traveling salesman problem[J]. Soft Computing, 2018, 22(5): 1669-1685.
DOI URL |
[17] |
CHEN J, YOU X M, LIU S, et al. Entropy-based dynamic heterogeneous ant colony optimization[J]. IEEE Access, 2019, 7: 56317-56328.
DOI |
[18] |
ZHU H W, YOU X M, LIU S. Multiple ant colony optimi-zation based on Pearson correlation coefficient[J]. IEEE Access, 2019, 7: 61628-61638.
DOI URL |
[19] |
AKHAND M, AYON S I, SHAHRIYAR S A, et al. Discrete spider monkey optimization for traveling salesman problem[J]. Applied Soft Computing, 2019, 86: 105887.
DOI URL |
[20] | WU X B, LIAO J, WANG Z C. Water wave optimization for the traveling salesman problem[C]// LNCS 9225: Proce-edings of the 11th International Conference on Intelligent Computing Theories and Methodologies, Fuzhou, Aug 20-23, 2015. Cham: Springer, 2015: 137-146. |
[1] | ZHAO Jiabo, YOU Xiaoming, LIU Sheng. Ant Colony Algorithm Based on Price Fluctuation Strategy and Dynamic Backtracking Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(6): 1390-1404. |
[2] | CHEN Bin, LIU Weiguo. SAC Model Based Improved Genetic Algorithm for Solving TSP [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1680-1693. |
[3] | MO Yadong, YOU Xiaoming, LIU Sheng. Dynamic Hierarchical Ant Colony Optimization Based on Reward and Punishment Learning Strategy [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(9): 1703-1716. |
[4] | LIU Yifan, YOU Xiaoming, LIU Sheng. Ant Colony Optimization Algorithm Based on Dynamic Recombination and Co- operative Communication Strategy [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1511-1525. |
[5] | MENG Jingwen, YOU Xiaoming, LIU Sheng. Double Ant Colony Algorithm Based on Collaborative Mechanism and Dynamic Regulation Strategy [J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2206-2221. |
[6] | PAN Han, YOU Xiaoming, LIU Sheng. Double-Type Ant Colony Algorithm Considering Dynamic Guidance and Neighborhood Interaction [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(6): 1005-1016. |
[7] | ZHANG Dehui, YOU Xiaoming, LIU Sheng. Dynamic Grouping Ant Colony Algorithm Combined with Cat Swarm Optimization [J]. Journal of Frontiers of Computer Science and Technology, 2020, 14(5): 880-891. |
[8] | FENG Zhiyu, YOU Xiaoming, LIU Sheng. Hierarchical Progressive Improved Clustering Ant Colony Algorithm for Solving TSP Problems [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(8): 1280-1294. |
[9] | YUAN Wanghuang, YOU Xiaoming, LIU Sheng. Dual-Population Ant Colony Algorithm on Dynamic Learning Mechanism [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(7): 1239-1250. |
[10] | ZHU Hongwei, YOU Xiaoming, LIU Sheng. Heterogeneous Dual Population Ant Colony Algorithm Based on Cooperative Filtering Strategy [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(10): 1754-1767. |
[11] | WANG Chunzi, GUO Wei, ZHANG Bin. Algorithm Design and Simulation of Solving Nonlinear Mixed Integer Programming Problem [J]. Journal of Frontiers of Computer Science and Technology, 2013, 7(9): 854-864. |
[12] | CHEN Guangpeng+, YANG Yubin. Memory-type Image Retrieval Method Based on Ant Colony Algorithm [J]. Journal of Frontiers of Computer Science and Technology, 2011, 5(1): 32-37. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/