[1] SINGH M, SINGH S, JAISWAL J, et al. Autonomous rail track inspection using vision based system[C]//Proceedings of the 2006 IEEE International Conference on Computational Intelligence for Homeland Security and Personal Safety, Ale-xandria, Oct 16-17, 2006. Piscataway: IEEE, 2006: 56-59.
[2] ZHANG X, DING Y, YAN P. Vision inspection of metal surface defects based on infrared imaging[J]. Acta Optica Sinica, 2011, 31(3): 112-120.
[3] CHOI D C, JEON Y J, KIM S H, et al. Detection of pinholes in steel slabs using Gabor filter combination and morpholo-gical features[J]. Journal of the Iron and Steel Institute of Japan, 2017, 57: 1045-1053.
[4] SHEN H, LI S, GU D, et al. Bearing defect inspection based on machine vision[J]. Measurement, 2012, 45: 719-733.
[5] GHORAI S, MUKHERJEE A, GANGADARAN M, et al. Automatic defect detection on hot-rolled flat steel products[J]. IEEE Transactions on Instrumentation and Measurement, 2013, 62(3): 612-621.
[6] CHA Y, CHOI W, SUH G, et al. Autonomous structural visual inspection using region-based deep learning for detecting multiple damage types[J]. Computer-Aided Civil and Infra-structure Engineering, 2018, 33(9): 731-747.
[7] WEN S, CHEN Z, LI C. Vision-based surface inspection sys-tem for bearing rollers using convolutional neural networks[J]. Applied Sciences, 2018, 8(12): 2565.
[8] TAO X, ZHANG D, MA W, et al. Automatic metallic surface defect detection and recognition with convolutional neural networks[J]. Applied Sciences, 2018, 8(9): 1575.
[9] LI Y, HUANG H, XIE Q, et al. Research on a surface defect detection algorithm based on MobileNet-SSD[J]. Applied Sciences, 2018, 8(9): 1678.
[10] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the 27th IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Jun 23-28, 2014. Piscataway: IEEE, 2014: 580-587.
[11] UIJLINGS J R R, VAN DE SANDE K E A, GEVERS T, et al. Selective search for object recognition[J]. International Journal of Computer Vision, 2013, 104(2): 154-171.
[12] HE K M, ZHANG X Y, REN S Q, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[C]//LNCS 8691: Proceedings of the 13th European Confer-ence on Computer Vision, Zurich, Sep 6-12, 2014. Cham: Springer, 2014: 346-361.
[13] GIRSHICK R B. Fast R-CNN[C]//Proceedings of the 14th IEEE International Conference on Computer Vision, Santiago, Dec 7-13, 2015. Piscataway: IEEE, 2015: 1440-1448.
[14] HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//Proceedings of the 16th IEEE International Conference on Computer Vision, Venice, Oct 22-29, 2017. Piscataway: IEEE, 2017: 2980-2998.
[15] REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: towards real-time object detection with region proposal net-works[C]//Proceedings of the 28th Annual Conference on Neural Information Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 91-99.
[16] DAI J F, LI Y, HE K M, et al. R-FCN: object detection via region-based fully convolutional networks[C]//Proceedings of the 29th Annual Conference on Neural Information Pro-cessing Systems, Barcelona, Dec 5-10, 2016. Red Hook: Curran Associates, 2016: 379-387.
[17] LI Y H, CHEN Y T, WANG N Y, et al. Scale-aware trident networks for object detection[C]//Proceedings of the 17th IEEE International Conference on Computer Vision, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6053-6062.
[18] CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection[C]//Proceedings of the 31st IEEE Conference on Computer Vision and Pattern Recogni-tion, Salt Lake City, Jun 18-22, 2018. Piscataway: IEEE, 2018: 6154-6162.
[19] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//Proceedings of the 29th IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Piscataway: IEEE, 2016: 779-788.
[20] REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 6517-6525.
[21] REDMON J, FARHADI A. YOLOv3: an incremental im-provement[J]. arXiv:1804.02767, 2018.
[22] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]//LNCS 9905: Proceedings of the 14th European Conference on Computer Vision, Amsterdam, Oct 11-14, 2016. Cham: Springer, 2016: 21-37.
[23] LIN T Y, GOYAL P, GIRSHICK R, et al. Focal loss for dense object detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 99: 2999-3007.
[24] LAW H, DENG J. CornerNet: detecting objects as paired keypoints[C]//LNCS 11218: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 765-781.
[25] DUAN K, BAI S, XIE L X, et al. CenterNet: keypoint triplets for object detection[C]//Proceedings of the 32nd IEEE Con-ference on Computer Vision and Pattern Recognition, Seoul, Oct 27-Nov 2, 2019. Piscataway: IEEE, 2019: 6568-6577.
[26] ITTI L, KOCH C, NIEBUR E. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transac-tions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
[27] RONALD R. The dynamic representation of scenes[J]. Visual Cognition, 2000, 7: 17-42.
[28] CHOROWSKI J, BAHDANAU D, SERDYUK D, et al. Attention-based models for speech recognition[C]//Procee-dings of the 29th International Conference on Neural Infor-mation Processing Systems, Montreal, Dec 7-12, 2015. Red Hook: Curran Associates, 2015: 577-585.
[29] SUTSKEVER I, VINYALS O, LE Q V. Sequence to sequence learning with neural networks[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates, 2014: 3104-3112.
[30] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems, Mon-treal, Dec 8-13, 2014. Red Hook: Curran Associates, 2017: 5998-6008.
[31] GEHRING J, AULI M, GRANGIER D, et al. Convolutional sequence to sequence learning[C]//Proceedings of the 34th International Conference on Machine Learning, Sydney, Aug 6-11, 2017: 1243-1252.
[32] ITTI L, KOCH C. Computational modelling of visual atten-tion[J]. Nature Reviews Neuroscience, 2001, 2(3): 194-203.
[33] MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[C]//Proceedings of the Annual Conference on Neural Information Processing Systems, Montreal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2204-2212.
[34] WANG F, JIANG M Q, QIAN C, et al. Residual attention network for image classification[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recogni-tion, Honolulu, Jul 21-26, 2017. Piscataway: IEEE, 2017: 6450-6458.
[35] HU J, SHEN L, ALBANIE S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(8): 2011-2023.
[36] HU J, SHEN L, ALBANIE S, et al. Gather-excite: exploiting feature context in convolutional neural networks[C]//Pro-ceedings of the Annual Conference on Neural Information Processing Systems, Montréal, Dec 3-8, 2018: 9423-9433.
[37] ZHAO H S, ZHANG Y, LIU S, et al. PSANet: point-wise spatial attention network for scene parsing[C]//LNCS 11213: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 270-286.
[38] WANG X L, GIRSHICK R, GUPTA A, et al. Non-local neural networks[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2017: 7794-7803.
[39] HU H, GU J Y, ZHANG Z, et al. Relation networks for object detection[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Piscataway: IEEE, 2017: 3588-3597.
[40] CAO Y, XU J R, LIN S, et al. GCNet: non-local networks meet squeeze-excitation networks and beyond[C]//LNCS 11211: Proceedings of the 17th IEEE International Conference on Computer Vision, Seoul, Oct 27-28, 2019. Piscataway: IEEE, 2019: 1971-1980.
[41] WOO S, PARK J, LEE J, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Con-ference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 3-19.
[42] ZEILER M D, FERGUS R. Visualizing and understanding convolutional networks[J]. arXiv:1311.2901, 2013.
[43] DING S M, LIU Z F, LI C L. AdaBoost learning for fabric defect detection based on HOG and SVM[C]//Proceedings of the 2011 International Conference on Multimedia Tech-nology, Hangzhou, Jul 26-28, 2011. Piscataway: IEEE, 2011: 2903-2906.
[44] CHONDRONASIOS A, POPOV I, JORDANOV I. Feature selection for surface defect classification of extruded alu-minum profiles[J]. International Journal of Advanced Manu-facturing Technology, 2016, 83: 33-41. |