Journal of Frontiers of Computer Science and Technology ›› 2022, Vol. 16 ›› Issue (5): 1182-1192.DOI: 10.3778/j.issn.1673-9418.2105016
• Theory and Algorithm • Previous Articles
JIA Heming1,+(), LIU Yuxiang2, LIU Qingxin3, WANG Shuang1, ZHENG Rong1
Received:
2021-05-07
Revised:
2021-07-09
Online:
2022-05-01
Published:
2022-05-19
About author:
JIA Heming, born in 1983, Ph.D., professor, M.S. supervisor. His research interests include swarm intelligence optimization algorithm, feature selection, etc.Supported by:
贾鹤鸣1,+(), 刘宇翔2, 刘庆鑫3, 王爽1, 郑荣1
通讯作者:
+ E-mail: jiaheminglucky99@126.com作者简介:
贾鹤鸣(1983—),男,辽宁辽阳人,博士,教授,硕士生导师,主要研究方向为群体智能优化算法、特征选择等。基金资助:
CLC Number:
JIA Heming, LIU Yuxiang, LIU Qingxin, WANG Shuang, ZHENG Rong. Hybrid Algorithm of Slime Mould Algorithm and Arithmetic Optimization Algorithm Based on Random Opposition-Based Learning[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(5): 1182-1192.
贾鹤鸣, 刘宇翔, 刘庆鑫, 王爽, 郑荣. 融合随机反向学习的黏菌与算术混合优化算法[J]. 计算机科学与探索, 2022, 16(5): 1182-1192.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2105016
算法 | 参数设置 |
---|---|
HSMAAOA | |
SMA[ | |
AOA[ | |
HHO[ | |
WOA[ | |
SSA[ | |
GWO[ | |
PSO[ | |
Table 1 Setting of each algorithm parameters
算法 | 参数设置 |
---|---|
HSMAAOA | |
SMA[ | |
AOA[ | |
HHO[ | |
WOA[ | |
SSA[ | |
GWO[ | |
PSO[ | |
函数 | 统计值 | HSMAAOA | SMA | AOA | HHO | WOA | SSA | GWO | PSO |
---|---|---|---|---|---|---|---|---|---|
| Mean | 0.000 0E+00 | 9.991 0E-300 | 2.267 7E-33 | 1.185 4E-92 | 9.266 7E-72 | 3.129 1E-07 | 1.187 7E-27 | 1.980 0E-04 |
Std | 0.000 0E+00 | 0.000 0E+00 | 1.190 1E-32 | 6.492 4E-92 | 1.730 2E-70 | 3.748 8E-07 | 1.387 4E-27 | 2.120 0E-04 | |
| Mean | 0.000 0E+00 | 9.182 6E-147 | 0.000 0E+00 | 6.632 9E-48 | 1.494 3E-50 | 1.682 9E+00 | 1.091 8E-16 | 3.872 2E-02 |
Std | 0.000 0E+00 | 5.031 2E-146 | 0.000 0E+00 | 3.631 6E-47 | 2.117 2E-50 | 1.227 7E+00 | 9.630 3E-17 | 5.943 1E-02 | |
| Mean | 0.000 0E+00 | 2.798 5E-297 | 5.757 0E-03 | 1.210 0E-76 | 3.985 8E+04 | 1.341 3E+03 | 8.971 1E-06 | 7.230 4E+01 |
Std | 0.000 0E+00 | 0.000 0E+00 | 1.113 3E-02 | 6.509 0E-76 | 1.225 0E+04 | 7.894 9E+02 | 2.060 7E-05 | 3.582 5E+01 | |
| Mean | 0.000 0E+00 | 3.524 6E-140 | 2.332 4E-02 | 1.189 5E-48 | 5.185 2E+01 | 1.091 3E+01 | 9.885 0E-07 | 1.104 5E+00 |
Std | 0.000 0E+00 | 1.930 5E-139 | 2.079 8E-02 | 5.501 4E-48 | 2.724 2E+01 | 3.792 3E+00 | 1.773 4E-06 | 2.212 2E-01 | |
| Mean | 6.072 2E+00 | 3.570 9E+00 | 2.846 0E+01 | 8.819 0E-03 | 2.790 7E+01 | 1.622 5E+02 | 2.703 7E+01 | 1.176 6E+02 |
Std | 1.117 5E+00 | 7.108 0E+00 | 3.732 2E-01 | 1.556 8E-02 | 4.748 1E-01 | 3.005 4E+02 | 0.763 4E-01 | 1.232 7E+02 | |
| Mean | 1.706 0E-03 | 5.938 0E-03 | 3.214 1E+00 | 1.210 0E-04 | 4.464 7E-01 | 2.003 7E-07 | 7.729 6E-01 | 2.440 0E-04 |
Std | 1.822 0E-03 | 3.795 0E-03 | 2.827 6E-01 | 2.430 0E-04 | 2.368 7E-01 | 3.004 8E-07 | 4.798 8E-01 | 5.660 0E-04 | |
| Mean | 1.690 0E-04 | 6.380 0E-04 | 1.069 5E-02 | 1.701 0E-04 | 2.199 0E-03 | 5.356 7E-01 | 2.492 0E-03 | 1.963 4E-01 |
Std | 1.440 0E-04 | 5.570 0E-04 | 7.722 0E-03 | 1.619 0E-04 | 3.086 0E-03 | 2.087 6E-01 | 1.279 0E-03 | 6.862 6E-02 | |
| Mean | -1.256 9E+04 | -1.256 8E+04 | -5.230 1E+03 | -1.256 1E+04 | -1.054 6E+04 | -7.279 2E+03 | -6.265 2E+03 | -5.205 8E+03 |
Std | 6.327 6E-08 | 4.078 5E-01 | 4.355 3E+02 | 3.956 6E+01 | 1.533 7E+03 | 5.726 2E+02 | 5.826 1E+02 | 1.537 0E+03 | |
| Mean | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 1.894 8E-15 | 5.551 9E+01 | 3.143 2E+00 | 5.887 2E+01 |
Std | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 1.037 8E-14 | 1.842 7E+01 | 4.459 8E+00 | 1.694 3E+01 | |
| Mean | 8.881 8E-16 | 8.881 8E-16 | 8.881 8E-16 | 8.881 8E-16 | 4.204 0E-15 | 2.566 7E+00 | 1.020 2E-13 | 2.117 9E-01 |
Std | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 2.788 6E-15 | 7.233 4E-01 | 1.423 3E-14 | 4.654 7E-01 | |
| Mean | 0.000 0E+00 | 0.000 0E+00 | 1.913 7E-01 | 0.000 0E+00 | 4.506 0E-03 | 1.337 3E-02 | 4.113 0E-03 | 1.003 0E-02 |
Std | 0.000 0E+00 | 0.000 0E+00 | 1.289 2E-01 | 0.000 0E+00 | 2.468 3E-02 | 1.528 0E-02 | 8.584 0E-03 | 1.077 0E-02 | |
| Mean | 1.464 0E-03 | 4.222 0E-03 | 5.419 7E-01 | 1.613 0E-05 | 2.260 9E-02 | 7.438 1E+00 | 5.379 4E-02 | 2.073 8E-02 |
Std | 3.349 0E-03 | 5.098 0E-03 | 5.557 3E-02 | 3.383 2E-05 | 1.409 3E-02 | 2.851 8E+00 | 2.642 0E-02 | 4.218 1E-02 | |
| Mean | 2.090 0E-03 | 1.401 2E-02 | 2.794 4E+00 | 1.140 0E-04 | 4.965 9E-01 | 1.4463 E+01 | 6.559 5E-01 | 5.550 0E-03 |
Std | 4.881 0E-03 | 4.327 4E-02 | 7.369 3E-02 | 2.030 0E-04 | 3.199 1E-01 | 1.218 1E+01 | 1.906 8E-01 | 8.988 0E-03 | |
| Mean | 9.980 0E-01 | 9.980 0E-01 | 9.579 7E+00 | 1.426 1E+00 | 2.900 6E+00 | 1.262 3E+00 | 5.687 3E+00 | 3.364 6E+00 |
Std | 6.356 4E-15 | 8.818 7E-13 | 4.035 4E+00 | 1.260 7E+00 | 2.819 8E+00 | 7.763 6E-01 | 4.848 0E+00 | 2.516 1E+00 | |
| Mean | 5.000 0E-04 | 5.480 0E-04 | 6.705 0E-03 | 3.950 0E-04 | 9.870 0E-04 | 2.620 0E-03 | 6.384 0E-03 | 8.570 0E-04 |
Std | 1.980 0E-04 | 2.570 0E-04 | 8.571 0E-03 | 2.350 0E-04 | 7.000 0E-04 | 5.331 0E-03 | 9.308 0E-03 | 1.350 0E-04 | |
| Mean | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 |
Std | 4.021 4E-11 | 1.355 3E-09 | 1.143 0E-07 | 2.946 1E-09 | 8.146 1E-10 | 1.913 2E-14 | 2.162 0E-08 | 6.387 7E-06 | |
| Mean | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 |
Std | 1.543 2E-09 | 1.186 9E-08 | 5.057 6E-08 | 3.120 9E-06 | 1.323 5E-05 | 1.093 0E-14 | 9.500 1E-07 | 0.000 0E+00 | |
| Mean | 3.000 0E+00 | 3.000 0E+00 | 7.500 2E+00 | 3.000 0E+00 | 3.000 0E+00 | 3.000 0E+00 | 3.000 0E+00 | 3.000 0E+00 |
Std | 1.695 8E-15 | 8.406 3E-10 | 1.023 4E+01 | 1.125 0E-06 | 1.010 0E-06 | 1.657 5E-13 | 5.153 5E-05 | 1.573 3E-13 | |
| Mean | -3.862 8E+00 | -3.862 8E+00 | -3.850 6E+00 | -3.861 5E+00 | -3.859 4E+00 | -3.862 8E+00 | -3.861 6E+00 | -3.862 8E+00 |
Std | 1.388 2E-06 | 2.188 4E-07 | 4.072 0E-03 | 1.964 0E-03 | 3.309 0E-03 | 6.239 3E-12 | 2.707 7E-03 | 2.611 7E-15 | |
| Mean | -3.261 5E+00 | -3.246 2E+00 | -3.059 9E+00 | -3.079 2E+00 | -3.257 5E+00 | -3.218 2E+00 | -3.279 3E+00 | -3.262 5E+00 |
Std | 6.049 2E-02 | 5.867 7E-02 | 8.954 0E-02 | 1.201 4E-01 | 1.133 0E-01 | 5.395 5E-02 | 6.930 3E-02 | 6.046 3E-02 | |
| Mean | -1.015 3E+01 | -1.015 3E+01 | -4.174 2E+00 | -5.208 5E+00 | -8.493 6E+00 | -7.315 8E+00 | -9.133 5E+00 | -7.016 9E+00 |
Std | 2.840 0E-04 | 2.930 0E-04 | 1.663 5E+00 | 8.554 7E-01 | 2.511 8E+00 | 3.392 7E+00 | 2.070 3E+00 | 3.130 8E+00 | |
| Mean | -1.040 3E+01 | -1.040 2E+01 | -3.791 3E+00 | -5.408 2E+00 | -7.420 1E+00 | -8.201 6E+00 | -1.040 1E+01 | -8.312 9E+00 |
Std | 3.390 0E-04 | 3.610 0E-04 | 1.634 5E+00 | 1.239 2E+00 | 3.095 6E+00 | 3.241 6E+00 | 8.170 0E-04 | 3.066 2E+00 | |
| Mean | -1.053 6E+01 | -1.053 8E+01 | -3.887 1E+00 | -5.299 5E+00 | -7.734 3E+00 | -8.959 6E+00 | -9.993 9E+00 | -9.185 4E+00 |
Std | 3.630 0E-04 | 4.940 0E-04 | 1.612 4E+00 | 9.579 4E-01 | 3.304 0E+00 | 2.966 7E+00 | 2.058 4E+00 | 2.787 9E+00 |
Table 2 Test results of benchmark functions of each algorithm
函数 | 统计值 | HSMAAOA | SMA | AOA | HHO | WOA | SSA | GWO | PSO |
---|---|---|---|---|---|---|---|---|---|
| Mean | 0.000 0E+00 | 9.991 0E-300 | 2.267 7E-33 | 1.185 4E-92 | 9.266 7E-72 | 3.129 1E-07 | 1.187 7E-27 | 1.980 0E-04 |
Std | 0.000 0E+00 | 0.000 0E+00 | 1.190 1E-32 | 6.492 4E-92 | 1.730 2E-70 | 3.748 8E-07 | 1.387 4E-27 | 2.120 0E-04 | |
| Mean | 0.000 0E+00 | 9.182 6E-147 | 0.000 0E+00 | 6.632 9E-48 | 1.494 3E-50 | 1.682 9E+00 | 1.091 8E-16 | 3.872 2E-02 |
Std | 0.000 0E+00 | 5.031 2E-146 | 0.000 0E+00 | 3.631 6E-47 | 2.117 2E-50 | 1.227 7E+00 | 9.630 3E-17 | 5.943 1E-02 | |
| Mean | 0.000 0E+00 | 2.798 5E-297 | 5.757 0E-03 | 1.210 0E-76 | 3.985 8E+04 | 1.341 3E+03 | 8.971 1E-06 | 7.230 4E+01 |
Std | 0.000 0E+00 | 0.000 0E+00 | 1.113 3E-02 | 6.509 0E-76 | 1.225 0E+04 | 7.894 9E+02 | 2.060 7E-05 | 3.582 5E+01 | |
| Mean | 0.000 0E+00 | 3.524 6E-140 | 2.332 4E-02 | 1.189 5E-48 | 5.185 2E+01 | 1.091 3E+01 | 9.885 0E-07 | 1.104 5E+00 |
Std | 0.000 0E+00 | 1.930 5E-139 | 2.079 8E-02 | 5.501 4E-48 | 2.724 2E+01 | 3.792 3E+00 | 1.773 4E-06 | 2.212 2E-01 | |
| Mean | 6.072 2E+00 | 3.570 9E+00 | 2.846 0E+01 | 8.819 0E-03 | 2.790 7E+01 | 1.622 5E+02 | 2.703 7E+01 | 1.176 6E+02 |
Std | 1.117 5E+00 | 7.108 0E+00 | 3.732 2E-01 | 1.556 8E-02 | 4.748 1E-01 | 3.005 4E+02 | 0.763 4E-01 | 1.232 7E+02 | |
| Mean | 1.706 0E-03 | 5.938 0E-03 | 3.214 1E+00 | 1.210 0E-04 | 4.464 7E-01 | 2.003 7E-07 | 7.729 6E-01 | 2.440 0E-04 |
Std | 1.822 0E-03 | 3.795 0E-03 | 2.827 6E-01 | 2.430 0E-04 | 2.368 7E-01 | 3.004 8E-07 | 4.798 8E-01 | 5.660 0E-04 | |
| Mean | 1.690 0E-04 | 6.380 0E-04 | 1.069 5E-02 | 1.701 0E-04 | 2.199 0E-03 | 5.356 7E-01 | 2.492 0E-03 | 1.963 4E-01 |
Std | 1.440 0E-04 | 5.570 0E-04 | 7.722 0E-03 | 1.619 0E-04 | 3.086 0E-03 | 2.087 6E-01 | 1.279 0E-03 | 6.862 6E-02 | |
| Mean | -1.256 9E+04 | -1.256 8E+04 | -5.230 1E+03 | -1.256 1E+04 | -1.054 6E+04 | -7.279 2E+03 | -6.265 2E+03 | -5.205 8E+03 |
Std | 6.327 6E-08 | 4.078 5E-01 | 4.355 3E+02 | 3.956 6E+01 | 1.533 7E+03 | 5.726 2E+02 | 5.826 1E+02 | 1.537 0E+03 | |
| Mean | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 1.894 8E-15 | 5.551 9E+01 | 3.143 2E+00 | 5.887 2E+01 |
Std | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 1.037 8E-14 | 1.842 7E+01 | 4.459 8E+00 | 1.694 3E+01 | |
| Mean | 8.881 8E-16 | 8.881 8E-16 | 8.881 8E-16 | 8.881 8E-16 | 4.204 0E-15 | 2.566 7E+00 | 1.020 2E-13 | 2.117 9E-01 |
Std | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 0.000 0E+00 | 2.788 6E-15 | 7.233 4E-01 | 1.423 3E-14 | 4.654 7E-01 | |
| Mean | 0.000 0E+00 | 0.000 0E+00 | 1.913 7E-01 | 0.000 0E+00 | 4.506 0E-03 | 1.337 3E-02 | 4.113 0E-03 | 1.003 0E-02 |
Std | 0.000 0E+00 | 0.000 0E+00 | 1.289 2E-01 | 0.000 0E+00 | 2.468 3E-02 | 1.528 0E-02 | 8.584 0E-03 | 1.077 0E-02 | |
| Mean | 1.464 0E-03 | 4.222 0E-03 | 5.419 7E-01 | 1.613 0E-05 | 2.260 9E-02 | 7.438 1E+00 | 5.379 4E-02 | 2.073 8E-02 |
Std | 3.349 0E-03 | 5.098 0E-03 | 5.557 3E-02 | 3.383 2E-05 | 1.409 3E-02 | 2.851 8E+00 | 2.642 0E-02 | 4.218 1E-02 | |
| Mean | 2.090 0E-03 | 1.401 2E-02 | 2.794 4E+00 | 1.140 0E-04 | 4.965 9E-01 | 1.4463 E+01 | 6.559 5E-01 | 5.550 0E-03 |
Std | 4.881 0E-03 | 4.327 4E-02 | 7.369 3E-02 | 2.030 0E-04 | 3.199 1E-01 | 1.218 1E+01 | 1.906 8E-01 | 8.988 0E-03 | |
| Mean | 9.980 0E-01 | 9.980 0E-01 | 9.579 7E+00 | 1.426 1E+00 | 2.900 6E+00 | 1.262 3E+00 | 5.687 3E+00 | 3.364 6E+00 |
Std | 6.356 4E-15 | 8.818 7E-13 | 4.035 4E+00 | 1.260 7E+00 | 2.819 8E+00 | 7.763 6E-01 | 4.848 0E+00 | 2.516 1E+00 | |
| Mean | 5.000 0E-04 | 5.480 0E-04 | 6.705 0E-03 | 3.950 0E-04 | 9.870 0E-04 | 2.620 0E-03 | 6.384 0E-03 | 8.570 0E-04 |
Std | 1.980 0E-04 | 2.570 0E-04 | 8.571 0E-03 | 2.350 0E-04 | 7.000 0E-04 | 5.331 0E-03 | 9.308 0E-03 | 1.350 0E-04 | |
| Mean | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 | -1.031 6E+00 |
Std | 4.021 4E-11 | 1.355 3E-09 | 1.143 0E-07 | 2.946 1E-09 | 8.146 1E-10 | 1.913 2E-14 | 2.162 0E-08 | 6.387 7E-06 | |
| Mean | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 | 3.978 9E-01 |
Std | 1.543 2E-09 | 1.186 9E-08 | 5.057 6E-08 | 3.120 9E-06 | 1.323 5E-05 | 1.093 0E-14 | 9.500 1E-07 | 0.000 0E+00 | |
| Mean | 3.000 0E+00 | 3.000 0E+00 | 7.500 2E+00 | 3.000 0E+00 | 3.000 0E+00 | 3.000 0E+00 | 3.000 0E+00 | 3.000 0E+00 |
Std | 1.695 8E-15 | 8.406 3E-10 | 1.023 4E+01 | 1.125 0E-06 | 1.010 0E-06 | 1.657 5E-13 | 5.153 5E-05 | 1.573 3E-13 | |
| Mean | -3.862 8E+00 | -3.862 8E+00 | -3.850 6E+00 | -3.861 5E+00 | -3.859 4E+00 | -3.862 8E+00 | -3.861 6E+00 | -3.862 8E+00 |
Std | 1.388 2E-06 | 2.188 4E-07 | 4.072 0E-03 | 1.964 0E-03 | 3.309 0E-03 | 6.239 3E-12 | 2.707 7E-03 | 2.611 7E-15 | |
| Mean | -3.261 5E+00 | -3.246 2E+00 | -3.059 9E+00 | -3.079 2E+00 | -3.257 5E+00 | -3.218 2E+00 | -3.279 3E+00 | -3.262 5E+00 |
Std | 6.049 2E-02 | 5.867 7E-02 | 8.954 0E-02 | 1.201 4E-01 | 1.133 0E-01 | 5.395 5E-02 | 6.930 3E-02 | 6.046 3E-02 | |
| Mean | -1.015 3E+01 | -1.015 3E+01 | -4.174 2E+00 | -5.208 5E+00 | -8.493 6E+00 | -7.315 8E+00 | -9.133 5E+00 | -7.016 9E+00 |
Std | 2.840 0E-04 | 2.930 0E-04 | 1.663 5E+00 | 8.554 7E-01 | 2.511 8E+00 | 3.392 7E+00 | 2.070 3E+00 | 3.130 8E+00 | |
| Mean | -1.040 3E+01 | -1.040 2E+01 | -3.791 3E+00 | -5.408 2E+00 | -7.420 1E+00 | -8.201 6E+00 | -1.040 1E+01 | -8.312 9E+00 |
Std | 3.390 0E-04 | 3.610 0E-04 | 1.634 5E+00 | 1.239 2E+00 | 3.095 6E+00 | 3.241 6E+00 | 8.170 0E-04 | 3.066 2E+00 | |
| Mean | -1.053 6E+01 | -1.053 8E+01 | -3.887 1E+00 | -5.299 5E+00 | -7.734 3E+00 | -8.959 6E+00 | -9.993 9E+00 | -9.185 4E+00 |
Std | 3.630 0E-04 | 4.940 0E-04 | 1.612 4E+00 | 9.579 4E-01 | 3.304 0E+00 | 2.966 7E+00 | 2.058 4E+00 | 2.787 9E+00 |
函数 | SMA | AOA | HHO | WOA | SSA | GWO | PSO |
---|---|---|---|---|---|---|---|
| N/A | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 |
| 2.172 8E-05 | 2.491 5E-06 | 2.491 5E-06 | 2.491 5E-06 | 2.491 5E-06 | 2.491 5E-06 | 2.491 5E-06 |
| 3.506 5E-03 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 |
| 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 |
| 8.034 6E-03 | 1.329 5E-05 | 9.073 4E-06 | 1.605 3E-05 | 7.477 2E-06 | 3.356 8E-05 | 3.356 8E-05 |
| 3.400 9E-04 | 3.391 8E-06 | 4.806 3E-05 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 | 4.020 0E-05 |
| 8.034 6E-03 | 1.099 2E-05 | 7.016 2E-03 | 5.452 1E-03 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 |
| 3.195 1E-03 | 3.391 8E-06 | 4.807 3E-01 | 4.143 2E-06 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 |
| N/A | 2.539 6E-06 | N/A | N/A | 6.866 2E-07 | 2.516 7E-06 | 6.866 2E-07 |
| N/A | 6.866 2E-07 | N/A | 2.298 8E-05 | 6.866 2E-07 | 6.667 7E-07 | 6.866 2E-07 |
| N/A | 6.866 2E-07 | N/A | N/A | 6.866 2E-07 | 1.643 9E-01 | 6.866 2E-07 |
| 6.783 0E-04 | 3.391 8E-06 | 3.391 8E-06 | 2.798 3E-05 | 3.391 8E-06 | 6.151 6E-06 | 5.452 1E-03 |
| 1.844 1E-05 | 3.391 8E-06 | 4.806 3E-05 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 | 2.133 7E-01 |
| 3.195 1E-03 | 3.894 0E-04 | 3.391 8E-06 | 5.052 7E-06 | 2.706 1E-05 | 3.391 8E-06 | 3.593 5E-01 |
| 2.997 6E-03 | 7.400 2E-01 | 7.802 1E-04 | 2.627 5E-01 | 5.737 1E-05 | 1.985 1E-01 | 3.690 6E-03 |
| 7.940 3E-03 | 3.101 7E-02 | 1.844 1E-01 | 3.609 3E-04 | 5.737 1E-05 | 3.391 8E-06 | 6.866 2E-07 |
| 3.439 7E-02 | 6.709 0E-04 | 2.228 9E-04 | 1.099 2E-05 | 3.299 5E-06 | 7.477 2E-06 | 6.866 2E-07 |
| 2.253 1E-02 | 1.329 5E-05 | 3.609 3E-04 | 5.052 7E-06 | 1.617 8E-03 | 3.391 8E-06 | 2.458 8E-06 |
| 2.145 1E-03 | 6.709 0E-04 | 4.020 0E-05 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 | 1.562 6E-06 |
| 1.844 1E-03 | 3.690 6E-03 | 1.050 0E-03 | 3.195 1E-01 | 4.197 0E-02 | 9.709 1E-02 | 6.785 7E-06 |
| 2.792 5E-02 | 2.822 6E-03 | 3.391 8E-06 | 3.391 8E-06 | 3.615 0E-01 | 1.605 3E-05 | 2.936 6E-02 |
| 8.034 6E-03 | 2.997 6E-01 | 3.391 8E-06 | 3.391 8E-06 | 6.709 0E-04 | 6.836 8E-05 | 1.178 6E-03 |
| 4.639 2E-02 | 1.8919E-04 | 3.391 8E-06 | 4.143 2E-06 | 5.452 1E-03 | 1.329 5E-05 | 5.790 5E-04 |
Table 3 Wilcoxon rank sum test results of each algorithm
函数 | SMA | AOA | HHO | WOA | SSA | GWO | PSO |
---|---|---|---|---|---|---|---|
| N/A | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 |
| 2.172 8E-05 | 2.491 5E-06 | 2.491 5E-06 | 2.491 5E-06 | 2.491 5E-06 | 2.491 5E-06 | 2.491 5E-06 |
| 3.506 5E-03 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 | 6.866 2E-07 |
| 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 | 1.260 4E-06 |
| 8.034 6E-03 | 1.329 5E-05 | 9.073 4E-06 | 1.605 3E-05 | 7.477 2E-06 | 3.356 8E-05 | 3.356 8E-05 |
| 3.400 9E-04 | 3.391 8E-06 | 4.806 3E-05 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 | 4.020 0E-05 |
| 8.034 6E-03 | 1.099 2E-05 | 7.016 2E-03 | 5.452 1E-03 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 |
| 3.195 1E-03 | 3.391 8E-06 | 4.807 3E-01 | 4.143 2E-06 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 |
| N/A | 2.539 6E-06 | N/A | N/A | 6.866 2E-07 | 2.516 7E-06 | 6.866 2E-07 |
| N/A | 6.866 2E-07 | N/A | 2.298 8E-05 | 6.866 2E-07 | 6.667 7E-07 | 6.866 2E-07 |
| N/A | 6.866 2E-07 | N/A | N/A | 6.866 2E-07 | 1.643 9E-01 | 6.866 2E-07 |
| 6.783 0E-04 | 3.391 8E-06 | 3.391 8E-06 | 2.798 3E-05 | 3.391 8E-06 | 6.151 6E-06 | 5.452 1E-03 |
| 1.844 1E-05 | 3.391 8E-06 | 4.806 3E-05 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 | 2.133 7E-01 |
| 3.195 1E-03 | 3.894 0E-04 | 3.391 8E-06 | 5.052 7E-06 | 2.706 1E-05 | 3.391 8E-06 | 3.593 5E-01 |
| 2.997 6E-03 | 7.400 2E-01 | 7.802 1E-04 | 2.627 5E-01 | 5.737 1E-05 | 1.985 1E-01 | 3.690 6E-03 |
| 7.940 3E-03 | 3.101 7E-02 | 1.844 1E-01 | 3.609 3E-04 | 5.737 1E-05 | 3.391 8E-06 | 6.866 2E-07 |
| 3.439 7E-02 | 6.709 0E-04 | 2.228 9E-04 | 1.099 2E-05 | 3.299 5E-06 | 7.477 2E-06 | 6.866 2E-07 |
| 2.253 1E-02 | 1.329 5E-05 | 3.609 3E-04 | 5.052 7E-06 | 1.617 8E-03 | 3.391 8E-06 | 2.458 8E-06 |
| 2.145 1E-03 | 6.709 0E-04 | 4.020 0E-05 | 3.391 8E-06 | 3.391 8E-06 | 3.391 8E-06 | 1.562 6E-06 |
| 1.844 1E-03 | 3.690 6E-03 | 1.050 0E-03 | 3.195 1E-01 | 4.197 0E-02 | 9.709 1E-02 | 6.785 7E-06 |
| 2.792 5E-02 | 2.822 6E-03 | 3.391 8E-06 | 3.391 8E-06 | 3.615 0E-01 | 1.605 3E-05 | 2.936 6E-02 |
| 8.034 6E-03 | 2.997 6E-01 | 3.391 8E-06 | 3.391 8E-06 | 6.709 0E-04 | 6.836 8E-05 | 1.178 6E-03 |
| 4.639 2E-02 | 1.8919E-04 | 3.391 8E-06 | 4.143 2E-06 | 5.452 1E-03 | 1.329 5E-05 | 5.790 5E-04 |
算法 | | | | | 结果 |
---|---|---|---|---|---|
HSMAAOA | 0.202 6 | 3.319 7 | 9.034 5 | 0.205 8 | 1.699 9 |
SMA | 0.194 3 | 3.470 5 | 9.033 4 | 0.205 9 | 1.707 9 |
AOA | 0.199 1 | 4.248 9 | 10.000 0 | 0.216 3 | 2.084 7 |
HHO | 0.233 0 | 2.983 0 | 8.464 9 | 0.234 5 | 1.800 4 |
WOA | 0.125 1 | 6.705 3 | 7.167 8 | 0.327 0 | 2.450 7 |
SSA | 0.133 6 | 5.935 9 | 7.244 6 | 0.325 1 | 2.376 1 |
GWO | 0.177 7 | 3.840 2 | 9.034 7 | 0.205 9 | 1.730 8 |
PSO | 0.262 1 | 4.335 6 | 6.314 7 | 0.421 3 | 2.675 9 |
Table 4 Optimization results of each algorithm applied to welded beam design problem
算法 | | | | | 结果 |
---|---|---|---|---|---|
HSMAAOA | 0.202 6 | 3.319 7 | 9.034 5 | 0.205 8 | 1.699 9 |
SMA | 0.194 3 | 3.470 5 | 9.033 4 | 0.205 9 | 1.707 9 |
AOA | 0.199 1 | 4.248 9 | 10.000 0 | 0.216 3 | 2.084 7 |
HHO | 0.233 0 | 2.983 0 | 8.464 9 | 0.234 5 | 1.800 4 |
WOA | 0.125 1 | 6.705 3 | 7.167 8 | 0.327 0 | 2.450 7 |
SSA | 0.133 6 | 5.935 9 | 7.244 6 | 0.325 1 | 2.376 1 |
GWO | 0.177 7 | 3.840 2 | 9.034 7 | 0.205 9 | 1.730 8 |
PSO | 0.262 1 | 4.335 6 | 6.314 7 | 0.421 3 | 2.675 9 |
算法 | | | | | 结果 |
---|---|---|---|---|---|
HSMAAOA | 0.858 0 | 0.420 4 | 46.040 0 | 133.232 1 | 5 972.027 4 |
SMA[ | 0.793 1 | 0.393 2 | 40.671 1 | 196.217 8 | 5 994.185 7 |
AOA[ | 0.830 3 | 0.416 2 | 42.751 2 | 169.345 4 | 6 048.784 4 |
HHO[ | 0.817 5 | 0.407 2 | 42.091 7 | 176.719 6 | 6 000.462 5 |
WOA[ | 0.812 5 | 0.437 5 | 42.098 2 | 177.638 9 | 6 059.741 0 |
SSA[ | 0.790 6 | 0.390 8 | 40.967 7 | 195.918 2 | 6 012.188 5 |
GWO[ | 0.812 5 | 0.434 5 | 42.089 1 | 176.758 7 | 6 051.563 9 |
PSO[ | 0.812 5 | 0.437 5 | 42.091 2 | 176.746 5 | 6 061.077 7 |
Table 5 Optimization results of each algorithm applied to pressure vessel design problem
算法 | | | | | 结果 |
---|---|---|---|---|---|
HSMAAOA | 0.858 0 | 0.420 4 | 46.040 0 | 133.232 1 | 5 972.027 4 |
SMA[ | 0.793 1 | 0.393 2 | 40.671 1 | 196.217 8 | 5 994.185 7 |
AOA[ | 0.830 3 | 0.416 2 | 42.751 2 | 169.345 4 | 6 048.784 4 |
HHO[ | 0.817 5 | 0.407 2 | 42.091 7 | 176.719 6 | 6 000.462 5 |
WOA[ | 0.812 5 | 0.437 5 | 42.098 2 | 177.638 9 | 6 059.741 0 |
SSA[ | 0.790 6 | 0.390 8 | 40.967 7 | 195.918 2 | 6 012.188 5 |
GWO[ | 0.812 5 | 0.434 5 | 42.089 1 | 176.758 7 | 6 051.563 9 |
PSO[ | 0.812 5 | 0.437 5 | 42.091 2 | 176.746 5 | 6 061.077 7 |
[1] | 贾鹤鸣, 李瑶, 孙康健. 基于遗传乌燕鸥算法的同步优化特征选择[J/OL]. 自动化学报 (2020-09-08) [2021-05-01]. https://doi.org/10.16383/j.aas.c200322. |
JIA H M, LI Y, SUN K J. Simultaneous feature selection optimization based on hybrid sooty tern optimization algorithm and genetic algorithm[J/OL]. Acta Automatica Sinica (2020-09-08) [2021-05-01]. https://doi.org/10.16383/j.aas.c200322. | |
[2] | 贾鹤鸣, 姜子超, 李瑶. 基于改进秃鹰搜索算法的同步优化特征选择[J]. 控制与决策, 2022, 37(2): 445-454. |
JIA H M, JIANG Z C, LI Y. Simultaneous feature selection optimization based on improved bald eagle search algorithm[J]. Control and Decision, 2022, 37(2): 445-454. | |
[3] | 贾鹤鸣, 姜子超, 彭晓旭, 等. 基于改进鬣狗优化算法的多阈值彩色图像分割[J]. 计算机应用与软件, 2020, 37(5): 261-267. |
JIA H M, JIANG Z C, PENG X X, et al. Multi-threshold color image segmentation based on improved spotted hyena optimizer[J]. Computer Applications and Software, 2020, 37(5): 261-267. | |
[4] | 张发展, 贺毅朝, 刘雪静, 等. 新颖的离散差分演化算法求解D{0-1}KP问题[J]. 计算机科学与探索, 2022, 16(2): 468-479. |
ZHANG F Z, HE Y Z, LIU X J, et al. Novel discrete differ-ential evolution algorithm for solving D{0-1}KP problem[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(2): 468-479. | |
[5] | KENNEDY J, EBERHART R. Particle swarm optimization[C]// Proceedings of the 1995 International Conference on Neural Networks, Perth, Nov 27-Dec 1, 1995. Piscataway: IEEE, 1995: 1942-1948. |
[6] |
MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 2017, 114: 163-191.
DOI URL |
[7] |
LI S M, CHEN H L, WANG M J, et al. Slime mould algorithm: a new method for stochastic optimization[J]. Future Generation Computer Systems, 2020, 111: 300-323.
DOI URL |
[8] |
ABUALIGAH L, DIABAT A, MIRJALILI S, et al. The arithmetic optimization algorithm[J]. Computer Methods in Applied Mechanics and Engineering, 2021, 376: 113609.
DOI URL |
[9] | MIRJALILI S, MIRJALILI S M, LEWIS A. Grey wolf optimizer[J]. Advances in Enginnering Software, 2014, 69: 46-61. |
[10] |
MIRJALILI S, LEWIS A. The whale optimization algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
DOI URL |
[11] |
HEIDARI A A, MIRJALILI S, FARIS H, et al. Harris hawks optimization: algorithm and applications[J]. Future Generation Computer Systems, 2019, 97: 849-872.
DOI URL |
[12] | WOLPERT D H, MACREADY W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Com-putation, 1997, 1(1): 67-82. |
[13] |
KOUADRI R, MUSIRIN I, SLIMANI L, et al. Optimal power flow control variables using slime mould algorithm for generator fuel cost and loss minimization with voltage profile enhancement solution[J]. International Journal of Emerging Trends in Engineering Research, 2020, 8(1): 36-44.
DOI URL |
[14] |
ZHAO J, GAO Z M. The hybridized Harris hawk optimization and slime mould algorithm[J]. Journal of Physics: Conference Series, 2020, 1682(1): 012029.
DOI URL |
[15] | SUN K J, JIA H M, LI Y, et al. Hybrid improved slime mould algorithm with adaptive β hill climbing for numerical optimization[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(1): 1-13. |
[16] | 高铖铖, 陈锡程, 张瑞, 等. 三种新型智能算法在疫情预警模型中的应用--基于百度搜索指数的COVID-19疫情预警[J]. 计算机工程与应用, 2021, 57(8): 256-263. |
GAO C C, CHEN X C, ZHANG R, et al. Application of three new intelligent algorithms in epidemic early warning model-COVID-19 epidemic warning based on baidu search index[J]. Computer Engineering and Applications, 2021, 57(8): 256-263. | |
[17] | TIZHOOSH H R. Opposition-based learning: a new scheme for machine intelligence[C]// Proceedings of the 2005 Internat-ional Conference on Computational Intelligence for Modelling, Control and Automation, and Intelligent Agent, Web Techn-ologies and Internet Commerce, Vienna, Nov 28-30, 2005. Washington: IEEE Computer Society, 2005: 695-701. |
[18] | 毛清华, 张强. 融合柯西变异和反向学习的改进麻雀算法[J]. 计算机科学与探索, 2021, 15(6): 1155-1164. |
MAO Q H, ZHANG Q. Improved sparrow algorithm combining cauchy mutation and opposition-based learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(6): 1155-1164. | |
[19] |
LONG W, JIAO J J, LIANG X M, et al. A random opposition-based learning grey wolf optimizer[J]. IEEE Access, 2019, 7: 113810-113825.
DOI URL |
[1] | HUANG Huixian, HU Pin, DING Can, ZHANG Guangyan, LIU Jiating. Fireworks and Differential Hybrid Multi-Objective Algorithm Guided by Evolutionary Information [J]. Journal of Frontiers of Computer Science and Technology, 2019, 13(3): 481-493. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/