Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (4): 792-809.DOI: 10.3778/j.issn.1673-9418.2212070
• Frontiers·Surveys • Previous Articles Next Articles
ZHANG Qiuju, LYU Qing
Online:
2023-04-01
Published:
2023-04-01
张秋菊,吕青
ZHANG Qiuju, LYU Qing. Research Progresses of Multi-modal Intelligent Robotic Manipulation[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(4): 792-809.
张秋菊, 吕青. 机器人多模态智能操作技术研究综述[J]. 计算机科学与探索, 2023, 17(4): 792-809.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2212070
[1] 黄艳龙, 徐德, 谭民. 机器人运动轨迹的模仿学习综述[J]. 自动化学报, 2022, 48(2): 315-334. HUANG Y L, XU D, TAN M. On imitation learning of robot movement trajectories: a survey[J]. Acta Automatica Sinica, 2022, 48(2): 315-334. [2] MASON M T. Toward robotic manipulation[J]. Annual Review of Control, Robotics, and Autonomous Systems, 2018, 1(1): 1-28. [3] XIA Z, DENG Z, FANG B, et al. A review on sensory perception for dexterous robotic manipulation[J]. International Journal of Advanced Robotic Systems, 2022, 19(2): 1729-8814. [4] 陈静, 王虹, 袁冠杰, 等. 基于卡尔曼滤波的多传感器时间配准方法[J]. 微波学报, 2021, 37(S1): 237-240. CHEN J, WANG H, YUAN G J, et al. Multi sensor time registration method based on Kalman filter[J]. Journal of Microwaves, 2021, 37(S1): 237-240. [5] ILONEN J, BOHG J, KYRKI V. Fusing visual and tactile sensing for 3-D object reconstruction while grasping[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, May 6-10, 2013. Piscataway: IEEE, 2013: 3547-3554. [6] PFANNE M, CHALON M. EKF-based in-hand object localization from joint position and torque measurements[C]//Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vancouver, Sep 24-28, 2017. Piscataway: IEEE, 2017: 2464-2470. [7] KOVAL M C, POLLARD N S, SRINIVASA S S. Pose estimation for planar contact manipulation with manifold particle filters[J]. International Journal of Robotics Research, 2015, 34(7): 922-945. [8] LI S, LYU S, TRINKLE J. State estimation for dynamic systems with intermittent contact[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation, Seattle, May 26-30, 2015. Piscataway: IEEE, 2015: 3709-3715. [9] LI S, LYU S, TRINKLE J. Efficient state estimation with constrained rao-blackwellized particle filter[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Oct 1-5, 2018. Piscataway: IEEE, 2018: 6682-6689. [10] LEE M A, YI B, MARTIN-MARTIN R, et al. Multimodal sensor fusion with differentiable filters[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, Las Vegas, Oct 24-Jan 24, 2021. Piscataway: IEEE, 2020: 10444-10451. [11] BHATTACHARJEE T, CLEVER H M, WADE J, et al. Multimodal tactile perception of objects in a real home[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 2523-2530. [12] LIMA B M R, ALVES DE OLIVEIRA T E, DA FONSECA V P. Classification of textures using a tactile-enabled finger in dynamic exploration tasks[C]//Proceedings of the 2021 IEEE Sensors, Sydney, Oct 31-Nov 3, 2021. Piscataway: IEEE, 2021: 1-4. [13] PASTOR F, GARCIA-GONZALEZ J, GANDARIAS J M, et al. Bayesian and neural inference on LSTM-based object recognition from tactile and kinesthetic information[J]. IEEE Robotics and Automation Letters, 2021, 6(1): 231-238. [14] ARRIOLA-RIOS V E, WYATT J L. A multimodal model of object deformation under robotic pushing[J]. IEEE Transactions on Cognitive and Developmental Systems, 2017, 9(2): 153-169. [15] 王业飞, 葛泉波, 刘华平, 等. 机器人视觉听觉融合的感知操作系统[J/OL]. 智能系统学报[2022-10-30]. http://kns. cnki.net/kcms/detail/23.1538.tp.20221025.1544.004.html. WANG Y F, GE Q B, LIU H P, et al. Robot visual perception of auditory fusion operating system[J]. CAAI Transactions on Intelligent Systems [2022-10-30]. http://kns. cnki.net/kcms/detail/23.1538.tp.20221025.1544.004.html. [16] WANG C, XU D, ZHU Y, et al. DenseFusion: 6D object pose estimation by iterative dense fusion[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 3338-3347. [17] WANG H, SRIDHAR S, HUANG J, et al. Normalized object coordinate space for category-level 6D object pose and size estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 15-20, 2019. Piscataway: IEEE, 2019: 2637-2646. [18] WEN B, LIAN W, BEKRIS K, et al. CaTGrasp: learning category-level task-relevant grasping in clutter from simulation[C]//Proceedings of the 2022 International Conference on Robotics and Automation, Philadelphia, May 23-27, 2022. Piscataway: IEEE, 2022: 6401-6408. [19] WANG S, WU J, SUN X, et al. 3D shape perception from monocular vision, touch, and shape priors[C]//Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, Madrid, Oct 1-5, 2018. Piscataway: IEEE, 2018: 1606-1613. [20] WATKINS-VALLS D, VARLEY J, ALLEN P. Multi-modal geometric learning for grasping and manipulation[J]. arXiv: 180307671, 2018. [21] PEKASLAN D, WAGNER C, GARIBALDI J M. VisuoTactile 6D pose estimation of an in-hand object using vision and tactile sensor data[J]. IEEE Transactions on Fuzzy Systems, 2020, 28(10): 2302-2312. [22] KROEMER O, PETERS J. A comparison of autoregressive hidden Markov models for multimodal manipulations with variable masses[J]. IEEE Robotics and Automation Letters, 2017, 2(2): 1101-1108. [23] CHU F J, XU R, SEGUIN L, et al. Toward affordance detection and ranking on novel objects for real-world robotic manipulation[J]. IEEE Robotics and Automation Letters, 2019, 4(4): 4070-4077. [24] GUO D, SUN F, LIU H, et al. A hybrid deep architecture for robotic grasp detection[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 1609-1614. [25] CHU F J, XU R, VELA P A. Real-world multiobject, multigrasp detection[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3355-3362. [26] DO T T, NGUYEN A, REID I. AffordanceNet: an end-to-end deep learning approach for object affordance detection[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 5882-5889. [27] LI Z, OKADA K, INABA M. Affordance action learning with state trajectory representation for robotic manipulation[C]//Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid Robots, Toronto, Oct 15-17, 2019. Piscataway: IEEE, 2019: 607-613. [28] SLOTH C, ITURRATE I. Simultaneous contact point and surface normal estimation during soft finger contact[C]//Proceedings of the 2021 20th International Conference on Advanced Robotics, Ljubljana, Dec 6-10, 2021. Piscataway: IEEE, 2021: 19-25. [29] HU J, XIONG R. Contact force estimation for robot manipulator using semiparametric model and disturbance Kalman filter[J]. IEEE Transactions on Industrial Electronics, 2018, 65(4): 3365-3375. [30] CALANDRA R, OWENS A, JAYARAMAN D, et al. More than a feeling: learning to grasp and regrasp using vision and touch[J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3300-3307. [31] YOO Y, LEE C Y, ZHANG B T. Multimodal anomaly detection based on deep auto-encoder for object slip perception of mobile manipulation robots[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, May 30-Jun 5, 2021. Piscataway: IEEE, 2021: 11443-11449. [32] YU K, RODRIGUEZ A. Realtime state estimation with tactile and visual sensing. Application to planar manipulation[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 7778-7785. [33] LAMBERT A S, MUKADAM M, SUNDARALINGAM B, et al. Joint inference of kinematic and force trajectories with visuo-tactile sensing[C]//Proceedings of the 2019 International Conference on Robotics and Automation, Montreal, May 20-24, 2019. Piscataway: IEEE, 2019: 3165-3171. [34] LEE H, PARK S, JANG K, et al. Contact state estimation for peg-in-hole assembly using Gaussian mixture model[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 3349-3356. [35] JASIM I F, PLAPPER P W. Contact-state monitoring of force-guided robotic assembly tasks using expectation maximization-based Gaussian mixtures models[J]. The International Journal of Advanced Manufacturing Technology, 2014, 73(5): 623-633. [36] DONG-HYEONG L, MIN-WOO N, YOUNG-LOUL K, et al. Model based assembly state estimation algorithm for the components of Tablet PC[C]//Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence, Maison Glad Jeju, Jun 28-Jul 1, 2017. Piscataway: IEEE, 2017: 740-743. [37] ZHANG K, SHARMA M, VELOSO M, et al. Leveraging multimodal haptic sensory data for robust cutting[C]//Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid Robots, Toronto, Oct 15-17, 2019. Piscataway: IEEE, 2019: 409-416. [38] WU H, XU Z, YAN W, et al. Incremental learning introspective movement primitives from multimodal unstructured demonstrations[J]. IEEE Access, 2019, 7: 159022-159036. [39] ZHE S, KROEMER O, LOEB G E, et al. Learning to switch between sensorimotor primitives using multimodal haptic signals[C]//LNCS 9825: Proceedings of the 14th International Conference on Simulation of Adaptive Behavior, Aberystwyth, Aug 23-26, 2016. Cham: Springer, 2016: 170-182. [40] SU Z, KROEMER O, LOEB G E, et al. Learning manipulation graphs from demonstrations using multimodal sensory signals[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 2758-2765. [41] PARK D, HOSHI Y, KEMP C C. A multimodal anomaly detector for robot-assisted feeding using an LSTM-based variational autoencoder[J]. IEEE Robotics and Automation Letters, 2018, 3(3): 1544-1551. [42] SHI Y, CHEN Z, LIU H, et al. Proactive action visual residual reinforcement learning for contact-rich tasks using a torque-controlled robot[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, May 30-Jun 5, 2021. Piscataway: IEEE, 2021: 765-771. [43] LEE M A, TAN M, ZHU Y, et al. Detect, reject, correct: crossmodal compensation of corrupted sensors[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, May 30-Jun 5, 2021. Piscataway: IEEE, 2021: 909-916. [44] ANZAI T, TAKAHASHI K. Deep gated multi-modal learning: in-hand object pose changes estimation using tactile and image data[C]//Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems Las Vegas, May 11-15, 2002. Piscataway: IEEE, 2020: 9361-9368. [45] 胡瑞钦, 隆昌宇, 张立建. 视觉与力觉结合的卫星部件机器人装配[J]. 光学精密工程, 2018, 26(10): 2504-2515. HU R Q, LONG C Y, ZHANG L J. Robotic assembly technology for satellite components based on visual and force information[J]. Optics and Precision Engineering, 2018, 26(10): 2504-2515. [46] 成天佑, 林艳萍, 马晓军. 一种视触觉引导的超声探头自动定位方法[J]. 西安电子科技大学学报, 2020, 47(1): 80-87. CHENG T Y, LIN Y P, MA X J. Ultrasound probe guiding method using vision and force[J]. Journal of Xidian University, 2020, 47(1): 80-87. [47] 李林峰, 王勇, 解永春, 等. 多视角视觉目标生成的空间机器人操作学习[J]. 空间控制技术与应用, 2022, 48(2): 18-28. LI L F, WANG Y, XIE Y C, et al. Learning space robotic manipulation via multi-view visual goal generation[J]. Aerospace Control and Application, 2022, 48(2): 18-28. [48] SHE Y, WANG S, DONG S, et al. Cable manipulation with a tactile-reactive gripper[J]. International Journal of Robotics Research, 2021, 40: 1385-1401. [49] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386. WU B L, QU D K, XU F. Industrial robot high precision peg-in-hole assembly based on hybrid force/position control[J]. Journal of Zhejiang University (Engineering Edition), 2018, 52(2): 379-386. [50] 付天宇, 李凤鸣, 崔涛, 等. 基于视觉/力觉的机器人协同缝制系统[J]. 机器人, 2022, 44(3): 352-360. FU T Y, LI F M, CUI T, et al. A robotic collaborative sewing system based on visual and force perception[J]. Robot, 2022, 44(3): 352-360. [51] 高霄. 基于模仿学习的机械臂运动规划与柔顺控制研究[D]. 武汉: 武汉大学, 2021. GAO X. Research on motion planning and flexibility control of manipulator based on imitation learning[D]. Wuhan: Wuhan University, 2021. [52] SAVARIMUTHU T R, BUCH A G, SCHLETTE C, et al. Teaching a robot the semantics of assembly tasks[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(5): 670-692. [53] ZHANG T, MCCARTHY Z, JOW O, et al. Deep imitation learning for complex manipulation tasks from virtual reality teleoperation[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 5628-5635. [54] IJSPEERT A J, NAKANISHI J, SCHAAL S. Movement imitation with nonlinear dynamical systems in humanoid robots[C]//Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington, May 11-15, 2002. Piscataway: IEEE, 2002: 1398-1403. [55] 张文安, 高伟展, 刘安东. 基于动态运动原语和自适应控制的机器人技能学习[J]. 上海交通大学学报[2022-10-30]. https://doi.org/10.16183/j.cnki.jsjtu.2021.379. ZHANG W A, GAO W Z, LIU A D. Robot skill learning based on dynamic motion primitive and adaptive control[J]. Journal of Shanghai Jiaotong University [2022-10-30]. https://doi.org/10.16183/j.cnki.jsjtu.2021.379. [56] 于建均, 姚红柯, 左国玉, 等. 基于动态系统的机器人模仿学习方法研究[J]. 智能系统学报, 2019, 14(5): 1026-1034. YU J J, YAO H K, ZUO G Y, et al. Research on robot imitation learning method based on dynamical system[J]. CAAI Transactions on Intelligent Systems, 2019, 14(5): 1026-1034. [57] DENISA M, GAMS A, UDE A, et al. learning compliant movement primitives through demonstration and statistical generalization[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2581-2594. [58] 张会文, 张伟, 周维佳. 基于交叉熵优化的高斯混合模型运动编码[J]. 机器人, 2018, 40(4): 569-576. ZHANG H W, ZHANG W, ZHOU W J. Encoding motor skills with Gaussian mixture models optimized by the cross entropy method[J]. Robot, 2018, 40(4): 569-576. [59] PETERNEL L, PETRI? T, BABI? J. Human-in-the-loop approach for teaching robot assembly tasks using impedance control interface[C]//Proceedings of the 2015 IEEE International Conference on Robotics and Automation, Seattle, May 26-30, 2015. Piscataway: IEEE, 2015: 1497-1502. [60] ROZO L, BRUNO D, CALINON S, et al. Learning optimal controllers in human-robot cooperative transportation tasks with position and force constraints[C]//Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots & Systems, Hamburg, Sep 28-Oct 2, 2015. Piscataway: IEEE, 2015: 1024-1030. [61] LE A T, GUO M, DUIJKEREN N V, et al. Learning forceful manipulation skills from multi-modal human demonstrations[C]//Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems, Prague, Sep 27-Oct 1, 2021. Piscataway: IEEE, 2021: 7770-7777. [62] 段宝阁, 杨尚尚, 谢啸, 等. 基于模仿学习的双曲率曲面零件复合材料织物机器人铺放[J]. 机器人, 2022, 44(4): 504-512. DUAN B G, YANG S S, XIE X, et al. Robotic layup of woven composite on double curvature surface parts based on imitation learning[J]. Robot, 2022, 44(4): 504-512. [63] LEVINE S, FINN C, DARRELL T, et al. End-to-end training of deep visuomotor policies[J]. Journal of Machine Learning Research, 2016, 17(1): 1334-1373. [64] FINN C, LEVINE S. Deep visual foresight for planning robot motion[C]//Proceedings of the 2017 IEEE International Conference on Robotics and Automation, Singapore, May 29-Jun 3, 2017. Piscataway: IEEE, 2017: 2786-2793. [65] LEE M A, ZHU Y, ZACHARES P, et al. Making sense of vision and touch: learning multimodal representations for contact-rich tasks[J]. IEEE Transactions on Robotics, 2020, 36(3): 582-596. [66] BALAKUNTALA M V, KAUR U, MA X, et al. Learning multimodal contact-rich skills from demonstrations without reward engineering[C]//Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Xi’an, May 30-Jun 5, 2021. Piscataway: IEEE, 2021: 4679-4685. [67] MARTIN-MARTIN R, LEE M A, GARDNER R, et al. Variable impedance control in end-effector space: an action space for reinforcement learning in contact-rich tasks[C]//Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, Nov 3-8, 2019. Piscataway: IEEE, 2019. [68] NARITA T, KROEMER O. Policy blending and recombination for multimodal contact-rich tasks[J]. IEEE Robotics and Automation Letters, 2021, 6(2): 2721-2728. [69] HAARNOJA T, PONG V, ZHOU A, et al. Composable deep reinforcement learning for robotic manipulation[C]//Proceedings of the 2018 IEEE International Conference on Robotics and Automation, Brisbane, May 21-25, 2018. Piscataway: IEEE, 2018: 6244-6251. [70] LEE M A, FLORENSA C, TREMBLAY J, et al. Guided uncertainty-aware policy optimization: combining learning and model-based strategies for sample-efficient policy lear-ning[C]//Proceedings of the 2020 IEEE International Con-ference on Robotics and Automation, Paris, May 31-Aug 31, 2020. Piscataway: IEEE, 2020: 7505-7512. [71] XU J, HOU Z, WANG W, et al. Feedback deep deterministic policy gradient with fuzzy reward for robotic multiple peg-in-hole assembly tasks[J]. IEEE Transactions on Industrial Informatics, 2019, 15(3): 1658-1667. [72] YOON J, LEE M, SON D, et al. Fast and accurate data-driven simulation framework for contact-intensive tight-tolerance robotic assembly tasks[J]. arXiv:2202.13098, 2022. [73] ZHAO W, QUERALTA J P, WESTERLUND T. Sim-to-real transfer in deep reinforcement learning for robotics: a survey[C]//Proceedings of the 2020 IEEE Symposium Series on Computational Intelligence, Canberra, Dec 1-4, 2020. Piscataway: IEEE, 2020: 737-744. [74] LIANG H, CONG L, HENDRICH N, et al. Multifingered grasping based on multimodal reinforcement learning[J]. IEEE Robotics and Automation Letters, 2022, 7(2): 1174-1181. [75] 吴培良, 刘瑞军, 李瑶, 等. 一种基于生成对抗网络与模型泛化的机器人推抓技能学习方法[J]. 仪器仪表学报, 2022, 43(5): 244-253. WU P L, LIU R J, LI Y, et al. Robot pushing and grasping skill learning method based on generative adversarial network and model generalization[J]. Chinese Journal of Scientific Instrument, 2022, 43(5): 244-253. [76] 张夏禹, 陈小平. 基于目标的域随机化方法在机器人操作方面的研究[J]. 计算机应用研究, 2022, 39(10): 3084-3088. ZHANG X Y, CHEN X P. Research on goal-based domain randomization method in robot manipulation[J]. Application Research of Computers, 2022, 39(10): 3084-3088. |
No related articles found! |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/