Journal of Frontiers of Computer Science and Technology ›› 2023, Vol. 17 ›› Issue (5): 1002-1016.DOI: 10.3778/j.issn.1673-9418.2212012
• Frontiers·Surveys • Previous Articles Next Articles
LIN Hao, WANG Chundong, SUN Yongjie
Online:
2023-05-01
Published:
2023-05-01
林浩,王春东,孙永杰
LIN Hao, WANG Chundong, SUN Yongjie. Survey on Personality Recognition Based on Social Media Data[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(5): 1002-1016.
林浩, 王春东, 孙永杰. 面向社交媒体数据的人格识别研究进展[J]. 计算机科学与探索, 2023, 17(5): 1002-1016.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2212012
[1] SHUMANOV M, JOHNSON L. Making conversations with chatbots more personalized[J]. Computers in Human Behavior, 2021, 117: 106627. [2] AGUIAR J J B, FECHINE J M, COSTA E B. Collaborative filtering strategy for product recommendation using per-sonality characteristics of customers[C]//Proceedings of the 2020 Brazilian Symposium on Multimedia and the Web, S?o Luís, Nov 30-Dec 4, 2020. Stroudsburg: ACL, 2020: 157-164. [3] PENG X Z, CUI F, CUI C, et al. Factors influencing rumor transmission: characteristics of circumstances, contents, trans-mitters and recipients[J]. Journal of Psychological Science, 2018, 41(4): 916-921. [4] AMITABHA A, AMAN A, SUJAY S, et al. Impact of COVID-19 on the human personality: an analysis based on document modeling using machine learning tools[J]. The Computer Journal, 2023, 66(4): 963-969. [5] MAJALUOMA S, SEPPALA T, KAUTIAINEN H, et al. Type D personality and metabolic syndrome among Finnish female municipal workers[J]. BMC Womens Health, 2020, 20(1): 202-209. [6] HOLLENBAUGH E E, FERRIS A L. Facebook self-disclosure: examining the role of traits, social cohesion, and motives[J]. Computers in Human Behavior, 2014, 30: 50-58. [7] 杨义先, 钮心忻. 黑客心理学-社会工程学原理[M]. 北京: 电子工业出版社, 2019. YANG Y X, NIU X X. Hacker psychology-principles of social engineering[M]. Beijing: Publishing House of Electronics Industry, 2019. [8] 郑日昌, 蔡永红, 周益群. 心理测量学[M]. 北京: 人民教育出版社, 1999: 155-170. ZHENG R C, CAI Y H, ZHOU Y Q. Psychometrics[M]. Beijing: People??s Education Press, 1999: 155-170. [9] MORGAN C D, MURRAY H A. A method for investigating fantasies: the thematic apperception test[J]. Archives of Neurology & Psychiatry, 1935, 34(2): 289-306. [10] 蔡莉, 王淑婷, 刘俊晖, 等. 数据标注研究综述[J]. 软件学报, 2020, 31(2): 302-320. CAI L, WANG S T, LIU J H, et al. Survey of data annotation[J]. Journal of Software, 2020, 31(2): 302-320. [11] 朱廷劭, 汪静莹, 赵楠, 等. 论大数据时代的心理学研究变革[J]. 新疆师范大学学报(哲学社会科学版), 2015, 36(4): 100-107. ZHU T S, WANG J Y, ZHAO N, et al. Reform on psychological research in big data age[J]. Journal of Xinjiang Normal University (Philosophy and Social Sciences), 2015, 36(4): 100-107. [12] 张磊, 陈贞翔, 杨波. 社交网络用户的人格分析与预测[J]. 计算机学报, 2014, 37(8): 1877-1894. ZHANG L, CHEN Z X, YANG B. Personality analysis and prediction of social network users[J]. Chinese Journal of Computers, 2014, 37(8): 1877-1894. [13] 费定舟, 赵雅婷. 社交媒体中的人格计算研究综述[J]. 计算机工程与应用, 2019, 55(20): 34-42. FEI D Z, ZHAO Y T. Survey of personality computing on social media[J]. Computer Engineering and Applications, 2019, 55(20): 34-42. [14] 吴桐, 郑康锋, 伍淳华, 等. 网络空间安全中的人格研究综述[J]. 电子与信息学报, 2020, 42(12): 2827-2840. WU T, ZHENG K F, WU C H, et al. A survey on personality in cyberspace security[J]. Journal of Electronics & Information Technology, 2020, 42(12): 2827-2840. [15] GOLDBERG L R, JOHNSON J A, EBER H W, et al. The international personality item pool and the future of public-domain personality Measures[J]. Journal of Research in Personality, 2006, 40(1): 84-96. [16] 顾雪英, 胡湜. MBTI人格类型量表:新近发展及应用[J]. 心理科学进展, 2012, 20(10): 1700-1708. GU X Y, HU S. MBTI: new development and application[J]. Advances in Psychological Science, 2012, 20(10): 1700-1708. [17] VINCIARELLI A, MOHAMMADI G. A survey of personality computing[J]. IEEE Transactions on Affective Computing, 2014, 5(3): 273-291. [18] ARGAMON S, KOPPEL D S M, PENNEBAKER J. Lexical predictors of personality type[C]//Proceedings of the 2005 Conference of the Classification Society of North America, City of Saint Louis, Jan 1, 2005: 1-16. [19] MAIRESSE F, WALKER M, MEHL M, et al. Using linguistic cues for the automatic recognition of personality in conversation and text[J]. Journal of Artificial Intelligence Research, 2007, 30: 457-500. [20] NGUYEN T, PHUNG D, ADAMS B, et al. Towards discovery of influence and personality traits through social link prediction[C]//Proceedings of the 5th International Conference on Weblogs and Social Media, Barcelona, Jul 17-21, 2011. Menlo Park: AAAI, 2011: 566-569. [21] PORIA S, GELBUKH A, AGARWAL B, et al. Common sense knowledge based personality recognition from text[C]//LNCS 8266: Proceedings of the 12th Mexican International Conference on Artificial Intelligence, Mexico City,Nov 24-30, 2013. Berlin, Heidelberg: Springer, 2013: 484-496. [22] CELLI F. Unsupervised personality recognition for social network sites[C]//Proceedings of the 6th International Conference on Digital Society, Valencia, Jan 30-Feb 4, 2012. Amsterdam: International Academy, Research, and Industry Association, 2012: 59-62. [23] AMIRHOSSEINI M H, KAZEMIAN H. Machine learning approach to personality type prediction based on the Myers-Briggs type indicator[J]. Multimodal Technologies and Interaction, 2020, 4(1): 9. [24] CHOONG E J, VARATHAN K D. Predicting judging perceiving of Myers-Briggs type indicator (MBTI) in online social forum[J]. PeerJ, 2021, 9: e11382. [25] TAO Y, YANG F F, OUYANG H L, et al. Psycholinguistic tripartite graph network for personality detection[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Aug 2-4, 2021. Stroudsburg: ACL, 2021: 4229-4239. [26] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[J]. arXiv:1301.3781, 2013. [27] PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing , Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543. [28] JOULIN A, GRAVE E, BOJANOWSKI P, et al. Bag of tricks for efficient text classification[J]. arXiv:1607.01759, 2016. [29] FLORIDI L, CHIRIATTI M. GPT-3: its nature, scope, limits, and consequences[J]. Minds and Machines, 2020, 30(4): 681-694. [30] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 4171-4186. [31] LIU Y, OTT M, GOYAL N, et al. RoBERTa: a robustly optimized BERT pretraining approach[J]. arXiv:1907.11692, 2019. [32] YANG Z L, DAI Z H, YANG Y M, et al. XLNet: generalized autoregressive pretraining for language understanding[C]//Proceedings of the 33rd International Conference on Neural Information Processing Systems, Vancouver, Dec 8-14, 2019. Cambridge: MIT Press, 2019: 5753-5763. [33] CERKEZ N, VRDOLJAK B, SKANSI S. A method for MBTI classification based on impact of class components[J]. IEEE Access, 2021, 9: 146550-146567. [34] DARLIANSYAH A. SENTIPEDE: a smart system for sentiment-based personality detection from short texts[J]. Journal of Universal Computer Science, 2019, 25: 1323-1352. [35] INDIRA R, MAHARANI W. Personality detection on social media Twitter using long short-term memory with Word-2Vec[C]//Proceedings of the 2021 IEEE International Conference on Communication, Networks and Satellite, Purwokerto, Jul 17-18, 2021. Piscataway: IEEE, 2021: 64-69. [36] MEHTA Y, FATEHI S, KAZAMEINI A, et al. Bottom-up and top-down: predicting personality with psycholinguistic and language model features[C]//Proceedings of the 2020 IEEE International Conference on Data Mining, Sorrento, Nov 17-20, 2020. Piscataway: IEEE, 2020: 1184-1189. [37] WANG Y, ZHENG J, LI Q, et al. XLNet-Caps: personality classification from textual posts[J]. Electronics, 2021, 10(11): 1360. [38] JIANG H, ZHANG X Z, CHOI D J. Automatic text-based personality recognition on monologues and multiparty dialogues using attentive networks and contextual embeddings[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park:AAAI, 2020: 13821-13822. [39] EL-DEMERDASH K, EL-KHORIBI R A, ISMAIL S M, et al. Deep learning based fusion strategies for personality prediction[J]. Egyptian Informatics Journal, 2021, 23(1): 47-53. [40] LOPEZ F O, OROZCO J R. Automatic personality evaluation from transliterations of YouTube Vlogs using classical and state-of-the-art word embedding[J]. Ingenieria e Investigación, 2022, 42(2): e93803. [41] VáSQUEZ R L, LUNA J O. Transformer-based approaches for personality detection using the MBTI model[C]//Proceedings of the 2021 XLVII Latin American Computing Conference, Cartago, Oct 25-29, 2021. Piscataway: IEEE, 2021: 1-7. [42] 张晗, 贾甜远, 骆方, 等. 面向网络文本的BERT心理特质预测研究[J]. 计算机科学与探索, 2021, 15(8): 1459-1468. ZHANG H, JIA T Y, LUO F, et al. Study on predicting psychological traits of online text by BERT[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(8): 1459-1468. [43] YUAN C, WU J, LI H, et al. Personality recognition based on user generated content[C]//Proceedings of the 15th International Conference on Service Systems and Service Management, Hangzhou, Jul 21-22, 2018. Piscataway: IEEE, 2018: 1-6. [44] MAJUMDER N. Deep learning-based document modeling for personality detection from text[J]. IEEE Intelligent Systems, 2017, 32: 74-79. [45] KAZAMEINI A, FATEHI S, MEHTA Y, et al. Personality trait detection using bagged SVM over BERT word embedding ensembles[C]//Proceedings of the ACL 2020 Workshop on Widening NLP, Washington, Jul 5, 2020. Stroudsburg: ACL, 2020: 1-4. [46] REN Z, SHEN Q, DIAO X, et al. A sentiment-aware deep learning approach for personality detection from text[J]. Information Processing and Management, 2021, 58(3): 102532. [47] PAVAN K K N, GAVRILOVA M L. Latent personality traits assessment from social network activity using contextual language embedding[J]. IEEE Transactions on Computational Social Systems, 2022, 9(2): 638-649. [48] MOHAMMAD S M, TURNEY P D. Crowdsourcing a word-emotion association lexicon[J]. Computational Intelligence, 2013, 29(3): 436-465. [49] MOHAMMAD S. Obtaining reliable human ratings of valence, arousal, and dominance for 20,000 English words[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 174-184. [50] CHATURVEDI I, SATAPATHY R, CAVALLARI S, et al. Fuzzy commonsense reasoning for multimodal sentiment analysis[J]. Pattern Recognition Letters, 2019, 125: 264-270. [51] LIN H, WANG C D, HAO Q B. A novel personality detection method based on high-dimensional psycholinguistic feat-ures and improved distributed gray wolf optimizer for feature selection[J]. Information Processing & Management, 2023, 60(2): 103217. [52] FITZGERALD S, EVANS D, GREEN R. Is your profile picture worth 1000 words? Photo characteristics associated with personality impression agreement[C]//Proceedings of the 2009 AAAI International Conference on Weblogs and Social Media, San Jose, May 17-20, 2009. Menlo Park: AAAI, 2009: 327-330. [53] CELLI F,BRUNI E,LEPRI B. Automatic personality and interaction style recognition from facebook profile pictures[C]//Proceedings of the 2014 ACM International Conference on Multimedia, Orlando, Nov 3-7, 2014. New York: ACM, 2014: 1101-1104. [54] TAREAF R B, ALHOSSEINI S A, MEINEL C. Facial-based personality prediction models for estimating individuals private traits[C]//Proceedings of the 2019 IEEE International Conference on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking, Xiamen, Dec 16-18, 2019. Piscataway: IEEE, 2019: 1586-1594. [55] SEGALIN C, CELLI F, POLONIO L, et al. What your Facebook profile picture reveals about your personality[C]//Proceedings of the 25th ACM Conference on Multimedia, Mountain View, Oct 23-27, 2017. New York: ACM, 2017: 460-468. [56] JEREMY N H, CHRISTIAN G, KAMAL M F, et al. Automatic personality prediction using deep learning based on social media profile picture and posts[C]//Proceedings of the 4th International Seminar on Research of Information Technology and Intelligent Systems, Yogyakarta, Dec 16-17, 2021. Piscataway: IEEE, 2021: 166-172. [57] FERWERDA B, TKALCIC M. Predicting users?? personality from instagram pictures: using visual and/or content features?[C]//Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization, Singapore, Jul 8-11, 2018. New York: ACM, 2018: 157-161. [58] CRISTANI M, VINCIARELLI A, SEGALIN C, et al. Unveiling the multimedia unconscious: implicit cognitive processes and multimedia content analysis[C]//Proceedings of the 2013 ACM International Conference on Multimedia, Barcelona, Oct 21-25, 2013. New York: ACM, 2013: 213-222. [59]SEGALIN C, PERINA A, CRISTANI M, et al. The pictures we like are our image: continuous mapping of favorite pictures into self-assessed and attributed personality traits[J]. IEEE Transactions on Affective Computing, 2017, 8: 268-285. [60] TORFASON R, AGUSTSSON E, ROTHE R, et al. From face images and attributes to attributes[C]//LNCS 10113:Proceedings of the 13th Asian Conference on Computer Vision, Taipei, China, Nov 20-24, 2016. Cham: Springer, 2016: 313-329. [61] BISWAS K, SHIVAKUMARA P, PAL U, et al. Fuzzy and genetic algorithm based approach for classification of personality traits oriented social media images[J]. Knowledge-Based Systems, 2022, 241: 108024. [62] GOLBECK J, ROBLES C, TURNER K. Predicting personality with social media[C]//Proceedings of the CHI’11 Extended Abstracts on Human Factors in Computing Systems, Vancouver, May 7-12, 2011. New York: ACM, 2011: 253-262. [63] GOLBECK J, ROBLES C, EDMONDSON M, et al. Predicting personality from Twitter[C]//Proceedings of the 2011 IEEE 3rd International Conference on Social Computing, Boston, Oct 9-11, 2011. Washington: IEEE Computer Society, 2011: 149-156. [64] CELLI F, BRUNO L. Is Big Five better than MBTI? A personality computing challenge using Twitter data[C]//Proceedings of the 5th Italian Conference on Computational Linguistics, Torino, Dec 10-12, 2018: 93-98. [65] 郑敬华, 郭世泽, 高梁, 等. 基于多任务学习的大五人格预测[J]. 中国科学院大学学报, 2018, 35(4): 550-560. ZHENG J H, GUO S Z, GAO L, et al. Microblog users?? Big-Five personality prediction based on multi-task learning[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(4): 550-560. [66] GJURKOVI? M, ?NAJDER J. Reddit: a gold mine for personality prediction[C]//Proceedings of the 2nd Workshop on Computational Modeling of People’s Opinions, Personality, and Emotions in Social Media, New Orleans, Jun 12-13, 2018. Stroudsburg: ACL, 2018: 87-97. [67] 魏华, 范翠英, 平凡, 等. 网络游戏动机的种类、影响及其作用机制[J]. 心理科学进展, 2011, 19(10): 1527-1533. WEI H, FAN C Y, PING F, et al. Online games motivations: types, effects and mechanism[J]. Advances in Psychological Science, 2011, 19(10): 1527-1533. [68] MEHTA Y, MAJUMDER N, GELBUKH A, et al. Recent trends in deep learning based personality detection[J]. Artificial Intelligence Review, 2020, 53: 2313-2339. [69] SUN Z, SONG Q, ZHU X, et al. A novel ensemble method for classifying imbalanced data[J]. Pattern Recognition, 2015, 48(5): 1623-1637. [70] VOLKOVA S, BACHRACH Y, ARMSTRONG M, et al. Inferring latent user properties from texts published in social media[C]//Proceedings of the 29th AAAI Conference on Artificial Intelligence, Austin Texas, Jan 25-30, 2015. Menlo Park: AAAI, 2015: 4296-4297. [71] WEI H H, ZHANG F Z, NICHOLAS J Y, et al. Beyond the words: predicting user personality from heterogeneous information[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining, Cambridge, Feb 6-10, 2017. New York: ACM, 2017: 305-314. [72] ONNO K, ELHAM J, BAREZI D B, et al. Investigating audio, video, and text fusion methods for end-to-end automatic personality prediction[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne, Jul 15-20, 2018. Stroudsburg: ACL, 2018: 606-611. [73] HUANG Y, DU C Z, XUE Z H, et al. What makes multi-modal learning better than single (Provably)[C]//Proceedings of the 35th Conference on Neural Information Processing Systems, Dec 6-14, 2021. Cambridge: MIT Press, 2021: 10944-10956. [74] YANG Y, YE H J, ZHAN D C, et al. Auxiliary information regularized machine for multiple modality feature learning[C]//Proceedings of the 24th International Conference on Artificial Intelligence, Buenos Aires, Jul 25-31, 2015. Menlo Park: AAAI, 2015: 1033-1039. [75] YANG Y, WU Y F, ZHAN D C, et al. Deep robust unsupervised multi-modal network[C]//Proceedings of the 33rd AAAI Conference on Artificial Intelligence, the 31st Innovative Applications of Artificial Intelligence Conference, the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, Honolulu, Jan 27-Feb 1, 2019. Menlo Park: AAAI, 2019: 5652-5659. [76] YANG Y, WANG K T, ZHAN D C, et al. Comprehensive semi-supervised multi-modal learning[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, Aug 10-16, 2019. Menlo Park: AAAI, 2019: 4092-4098. [77] 潘嘉诚, 董一鸿, 陈华辉. 基于图神经网络的自闭症辅助诊断研究综述[J]. 计算机工程, 2022, 48(9): 1-11. PAN J C, DONG Y H, CHEN H H. Review of research on auxiliary diagnosis of autism based on graph neural networks[J]. Computer Engineering, 2022, 48(9): 1-11. [78] WEI J W, ZOU K. EDA: easy data augmentation techniques for boosting performance on text classification tasks[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 6381-6387. [79] 王鑫鹏, 王晓强, 林浩, 等. 深度学习典型目标检测算法的改进综述[J]. 计算机工程与应用, 2022, 58(6): 42-57. WANG X P, WANG X Q, LIN H, et al. Review on improvement of typical object detection algorithms in deep learning[J]. Computer Engineering and Applications, 2022, 58(6): 42-57. [80] SANJA S, SEREN Y. Why is MBTI personality detection from texts a difficult task?[C]//Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics, Apr 21-23, 2021. Stroudsburg: ACL, 2021: 3580-3589. [81] 钱锡红. 员工性格差异分析及其对管理的启示[J]. 领导科学, 2020(20): 75-78. QIAN X H. Analysis of employee personality differences and its implications for management[J]. Leadership Science, 2020(20): 75-78. [82] 朱昭红, 孙令令. 阈上阈下启动刺激在不同锻炼人群中引发自动评价的特点[J]. 心理与行为研究, 2022, 20(2): 182-189. ZHU Z H, SUN L L. Automatic evaluation of supraliminal and subliminally presentation of exercis-related stimuli in different exercise groups[J]. Studies of Psychology and Behavior, 2022, 20(2): 182-189. [83] 王凌云, 王爱君, 齐宇欣, 等. 内隐联想测验中他人重要性对自我心理表征的影响[J]. 心理科学, 2019, 42(3): 633-638. WANG L Y, WANG A J, QI Y X, et al. The mental representation of the self in the implicit association test: the role of the other[J]. Journal of Psychological Science, 2019, 42(3): 633-638. [84] 温芳芳, 柯文琳, 佐斌, 等. 内隐关系评估程序(IRAP): 测量原理及应用[J]. 心理科学进展, 2021, 29(11): 1936-1947. WEN F F, KE W L, ZUO B, et al. Implicit relational assessment procedure (IRAP): measuring principle and applications[J]. Advances in Psychological Science, 2021, 29(11): 1936-1947. [85] 蔺泽浩, 李国趸, 曾祥极, 等. 基于跨媒体解纠缠表示学习的风格化图像描述生成[J]. 计算机学报, 2022, 45(12): 2510-2527. LIN Z H, LI G D, ZENG X J, et al. A stylized image caption approach based on cross-media disentangled representation learning[J]. Chinese Journal of Computers, 2022, 45(12): 2510-2527. [86] PINTAS J T, FERNANDES L A F, GARCIA A C B. Feature selection methods for text classification: a systematic literature review[J]. Artificial Intelligence Review, 2021, 54: 6149-6200. [87] MCCRAE R R. Integrating trait and process approaches to personality: a sketch of an agenda[M]. Hoboken: John Wiley & Sons, 2016. [88] SHAPPIE A T, DAWSON C A, DEBB S M. Personality as a predictor of cybersecurity behavior[J]. Psychology of Popular Media, 2020, 9(4): 475-480. [89] SU K W, CHEN C J, SHUE L Y. Implication of cognitive style in designing computer-based procedure interface[J]. Human Factors and Ergonomics in Manufacturing & Service Industries, 2013, 23(3): 230-242. |
[1] | SHEN Tiesunlong, FU Xiaodong, YUE Kun, LIU Li, LIU Lijun. Probabilistic Recommendation Model Integrating Personality Features [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(1): 251-262. |
[2] | DU Zhijuan, WANG Shuo, WANG Qiuyue, MENG Xiaofeng. Survey on Social Media Big Data Analytics [J]. Journal of Frontiers of Computer Science and Technology, 2017, 11(1): 1-23. |
[3] | FU Bo, LIU Ting. Identifying Consumption Target in Microblog Based on Cross Social Media Search [J]. Journal of Frontiers of Computer Science and Technology, 2015, 9(10): 1247-1255. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/