[1] DE SA V R. Spectral clustering with two views[C]//Proceedings of the 22nd International Conference on Machine Learning the Workshop on Learning with Multiple Views, Bonn, Aug 7-11, 2005: 20-27.
[2] XIAO Y, ZHANG J, LIU B, et al. Multi-view maximum margin clustering with privileged information learning[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2024, 34(4): 2719-2733.
[3] LU Y, LIU Y, LONG Z, et al. O-Minus decomposition for multi-view tensor subspace clustering[J]. IEEE Transactions on Artificial Intelligence, 2023, 1(1): 1-14.
[4] ZHANG Z, LIU L, SHEN F, et al. Binary multi-view clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2018, 41(7): 1774-1782.
[5] CHANG W, NIE F, WANG R, et al. Robust subspace clustering by learning an optimal structured bipartite graph via low-rank representation[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 3692-3696.
[6] LI L, HE H. Bipartite graph based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(7): 3111-3125.
[7] ZHU W, NIE F, LI X. Fast spectral clustering with efficient large graph construction[C]//Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2017: 2492-2496.
[8] LIU S, WANG S, ZHANG P, et al. Efficient one-pass multi-view subspace clustering with consensus anchors[C]//Proceedings of the 2022 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2022: 7576-7584.
[9] YANG B, ZHANG X, LI Z, et al. Efficient multi-view K-means clustering with multiple anchor graphs[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 35(7): 6887-6900.
[10] XIA W, GAO Q, WANG Q, et al. Tensorized bipartite graph learning for multi-view clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(4): 5187- 5202.
[11] GUO C, ZHAO H. Community structure discovery method based on the Gaussian kernel similarity matrix[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(6): 2268-2278.
[12] VON LUXBURG U. A tutorial on spectral clustering[J]. Statistics and Computing, 2007, 17: 395-416.
[13] SHI J, MALIK J. Normalized cuts and image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(8): 888-905.
[14] GUO Z, PUN C M. Improved normalized cut for multi-view clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 44(12): 10244-10251.
[15] HU Z, NIE F, CHANG W, et al. Multi-view spectral clustering via sparse graph learning[J]. Neurocomputing, 2020, 384: 1-10.
[16] LIN Z, CHEN M, MA Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices[J]. Mathematics, 2010, 247: 2227-7390.
[17] HUANG J, NIE F, HUANG H. Spectral rotation versus K-means in spectral clustering[C]//Proceedings of the 2013 AAAI Conference on Artificial Intelligence. Menlo Park: AAAI, 2013: 431-437.
[18] SHI S, NIE F, WANG R, et al. Fast multi-view clustering via prototype graph[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 35(1): 443-455.
[19] WANG H, YANG Y, LIU B. GMC: graph-based multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 32(6): 1116-1129.
[20] YANG B, ZHANG X, NIE F, et al. Fast multi-view clustering via nonnegative and orthogonal factorization[J]. IEEE Transactions on Image Processing, 2020, 30: 2575-2586.
[21] HUANG S, TSANG I W, XU Z, et al. Measuring diversity in graph learning: a unified framework for structured multi-view clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 34(12): 5869-5883.
[22] YANG W, WANG Y, TANG C, et al. One step multi-view spectral clustering via joint adaptive graph learning and matrix factorization[J]. Neurocomputing, 2023, 524: 95-105.
[23] KANG Z, SHI G, Huang S, et al. Multi-graph fusion for multi-view spectral clustering[J]. Knowledge-Based Systems, 2020, 189: 105102.
[24] HU Z, NIE F, WANG R, et al. Multi-view spectral clustering via integrating nonnegative embedding and spectral embedding[J]. Information Fusion, 2020, 55: 251-259.
[25] ZHAO K, LIN Z, ZHU X, et al. Structured graph learning for scalable subspace clustering: from single view to multi-view[J]. IEEE Transactions on Cybernetics, 2021, 52(9): 8976-8986.
[26] YANG Y, XU D, NIE F, et al. Image clustering using local discriminant models and global integration[J]. IEEE Transactions on Image Processing, 2010, 19(10): 2761-2773.
[27] XU W, LIU X, GONG Y. Document clustering based on non-negative matrix factorization[C]//Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval. New York: ACM, 2003: 267-273.
[28] ZHAN K, NIE F, WANG J, et al. Multi-view consensus graph clustering[J]. IEEE Transactions on Image Processing, 2018, 28(3): 1261-1270.
[29] VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: is a correction for chance necessary?[C]//Proceedings of the 26th Annual International Conference on Machine Learning, Montreal, Jun 14-18, 2009: 1073-1080. |