[1] 江泽涛, 钱艺, 伍旭, 等. 一种基于ARD-GAN的低照度图像增强方法[J]. 电子学报, 2021, 49(11): 2160-2165.
JIANG Z T, QIAN Y, WU X, et al. Low-light image enhancement method based on ARD-GAN[J]. Acta Electronica Sinica, 2021, 49(11): 2160-2165.
[2] LAND E H. The retinex[J]. American Scientist, 1964, 52(2): 247-264.
[3] JOBSON D J, RAHMAN Z, WOODELL G A. Properties and performance of a center/surround retinex[J]. IEEE Transactions on Image Processing, 1997, 6(3): 451-462.
[4] 常戬, 韩旭. 结合导向滤波与自适应算子的水下图像增强[J]. 计算机工程与应用, 2023, 59(4): 216-223.
CHANG J, HAN X. Underwater image enhancement combining guide filtering with adaptive operator[J]. Computer Engineering and Applications, 2023, 59(4): 216-223.
[5] LORE K G, AKINTAYO A, SARKAR S. LLNet: a deep autoencoder approach to natural low-light image enhancement[J]. Pattern Recognition, 2017, 61: 650-662.
[6] WEI C, WANG W, YANG W, et al. Deep retinex decomposition for low-light enhancement[C]//Proceedings of the British Machine Vision Conference 2018, Newcastle, Sep 3-6, 2018: 155.
[7] WANG R, ZHANG Q, FU C W, et al. Underexposed photo enhancement using deep illumination estimation[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 6849-6857.
[8] JIANG Y, GONG X, LIU D, et al. EnlightenGAN: deep light enhancement without paired supervision[J]. IEEE Transactions on Image Processing, 2021, 30: 2340-2349.
[9] 徐少平, 陈孝国, 李芬, 等. 采用两阶段混合策略实现的低照度图像增强算法[J]. 电子学报, 2021, 49(11): 2166-2170.
XU S P, CHEN X G, LI F, et al. A low-light image enhancement algorithm using two-stage hybrid[J]. Acta Electronica Sinica, 2021, 49(11): 2166-2170.
[10] 卫依雪, 周冬明, 王长城, 等. 结合多分支结构和U-net的低照度图像增强[J]. 计算机工程与应用, 2022, 58(12): 199-208.
WEI Y X, ZHOU D M, WANG C C, et al. Low-light image enhancement using multi-branch structure and U-net[J]. Computer Engineering and Applications, 2022, 58(12): 199-208.
[11] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[12] ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 2223-2232.
[13] WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]//Proceedings of the 15th European Conference on Computer Vision. Cham: Springer, 2018: 3-19.
[14] JOLICOEUR-MARTINEAU A. The relativistic discriminator: a key element missing from standard GAN[C]//Proceeding of the 7th International Conference on Learning Representations,New Orleans, May 6-9, 2019.
[15] MAO X, LI Q, XIE H, et al. Least squares generative adversarial networks[C]//Proceedings of the 2017 IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2017: 2794-2802.
[16] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//roceedings of the 3rd International Conference on Learning Representations, San Diego, May 7-9, 2015.
[17] BYCHKOVSKY V, PARIS S, CHAN E, et al. Learning photographic global tonal adjustment with a database of input/output image pairs[C]//Proceedings of the 24th IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2011: 97-104.
[18] 黄颖, 彭慧, 李昌盛, 等. LLFlowGAN: 以生成对抗方式约束可逆流的低照度图像增强[J]. 中国图象图形学报, 2024, 29(1): 65-79.
HUANG Y, PENG H, LI C S, et al. LLFlowGAN: a low-light image enhancement method for constraining invertible flow in a generative adversarial manner[J]. Journal of Image and Graphics, 2024, 29(1): 65-79.
[19] 杨镇雄, 谭台哲. 基于生成对抗网络的低光照图像增强算法[J]. 广东工业大学学报, 2024, 41(1): 55-62.
YANG Z X, TAN T Z. Low illumination image enhancement algorithm based on generative adversarial network[J]. Journal of Guangdong University of Technology, 2024, 41(1): 55-62.
[20] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612.
[21] MITTAL A, SOUNDARARAJAN R, BOVIK A C. Making a “completely blind” image quality analyzer[J]. IEEE Signal Processing Letters, 2013, 20(1): 209-212.
[22] ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition.Washington: IEEE Computer Society, 2017: 1125-1134.
[23] ZHAO Z, XIONG B, WANG L, et al. RetinexDIP: a unified deep framework for low-light image enhancement[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2021, 32(3): 1076-1088. |