[1] 费建伟, 夏志华, 余佩鹏, 等. 人脸合成技术综述[J]. 计算机科学与探索, 2021, 15(11): 2025-2047.
FEI J W, XIA Z H, YU P P, et al. Survey of face synthesis[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(11): 2025-2047.
[2] MATERN F, RIESS C, STAMMINGER M. Exploiting visual artifacts to expose deepfakes and face manipulations[C]//Proceedings of the 2019 IEEE Winter Applications of Computer Vision Workshops. Piscataway: IEEE, 2019: 83-92.
[3] LI L Z, BAO J M, ZHANG T, et al. Face X-ray for more general face forgery detection[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5000-5009.
[4] YANG X, LI Y Z, LYU S W. Exposing deep fakes using inconsistent head poses[C]//Proceedings of the 2019 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2019: 8261-8265.
[5] QIAN Y Y, YIN G J, SHENG L, et al. Thinking in frequency: face forgery detection by mining frequency-aware clues[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 86-103.
[6] ZHANG B, ZHOU J P, SHUMAILOV I, et al. On attribution of deepfakes[EB/OL].[2023-11-26].https://arxiv.org/abs/2008.09194.
[7] GIRISH S, SURI S, RAMBHATLA S, et al. Towards discovery and attribution of open-world GAN generated images[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 14074-14083.
[8] JIA S, LI X, LYU S W. Model attribution of face-swap deepfake videos[C]//Proceedings of the 2022 IEEE International Conference on Image Processing. Piscataway: IEEE, 2022: 2356-2360.
[9] GUARNERA L, GIUDICE O, NIEßNER M, et al. On the exploitation of deepfake model recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 2022: 61-70.
[10] SUN Z M, CHEN S, YAO T P, et al. Contrastive pseudo learning for open-world DeepFake attribution[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 20825-20835.
[11] YU N, DAVIS L, FRITZ M. Attributing fake images to GANs: learning and analyzing GAN fingerprints[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 7555-7565.
[12] YANG T Y, HUANG Z Y, CAO J, et al. Deepfake network architecture attribution[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(4): 4662-4670.
[13] DOSOVITSKIY A, BEYER L, KOLESNIKOV A, et al. An image is worth 16×16 words: transformers for image recognition at scale[C]//Proceedings of the 8th International Conference on Learning Representations, 2020: 1-21.
[14] RÖSSLER A, COZZOLINO D, VERDOLIVA L, et al. FaceForensics: learning to detect manipulated facial images[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 1-11.
[15] HE Y N, GAN B, CHEN S Y, et al. ForgeryNet: a versatile benchmark for comprehensive forgery analysis[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 4358-4367.
[16] LI Y Z, CHANG M C, LYU S W. In ictu oculi: exposing AI created fake videos by detecting eye blinking[C]//Proceedings of the 2018 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2018: 1-7.
[17] GUO H, HU S, WANG X, et al. Eyes tell all: irregular pupil shapes reveal GAN-generated faces[C]//Proceedings of the 2022 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2022: 2904-2908.
[18] HU S, LI Y Z, LYU S W. Exposing GAN-generated faces using inconsistent corneal specular highlights[C]//Proceedings of the 2021 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway: IEEE, 2021: 2500-2504.
[19] FRANK J, EISENHOFER T, SCHÖNHERR L, et al. Leveraging frequency analysis for deep fake image recognition[C]//Proceedings of the 37th International Conference on Machine Learning. New York: ACM, 2020: 3247-3258.
[20] TAN C C, ZHAO Y, WEI S K, et al. Frequency-aware deepfake detection: improving generalizability through frequency space domain learning[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(5): 5052-5060.
[21] CHEN P, LIU J, LIANG T, et al. FSSPOTTER: spotting face-swapped video by spatial and temporal clues[C]//Proceedings of the 2020 IEEE International Conference on Multimedia and Expo. Piscataway: IEEE, 2020: 1-6.
[22] GU Z H, CHEN Y, YAO T P, et al. Delving into the local: dynamic inconsistency learning for DeepFake video detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(1): 744-752.
[23] COZZOLINO D, RÖSSLER A, THIES J, et al. ID-reveal: identity-aware DeepFake video detection[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2021: 15088-15097.
[24] DONG X Y, BAO J M, CHEN D D, et al. Identity-driven DeepFake detection[EB/OL]. [2023-11-26]. https://arxiv.org/abs/2012.03930.
[25] LIU Z Z, QI X J, TORR P H S. Global texture enhancement for fake face detection in the wild[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 8057-8066.
[26] AFCHAR D, NOZICK V, YAMAGISHI J, et al. MesoNet: a compact facial video forgery detection network[C]//Proceedings of the 2018 IEEE International Workshop on Information Forensics and Security. Piscataway: IEEE, 2018: 1-7.
[27] DANG H, LIU F, STEHOUWER J, et al. On the detection of digital face manipulation[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5780-5789.
[28] ZHAO H Q, WEI T Y, ZHOU W B, et al. Multi-attentional deepfake detection[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2021: 2185-2194.
[29] CAO J Y, MA C, YAO T P, et al. End-to-end reconstruction-classification learning for face forgery detection[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 4103-4112.
[30] WANG Y, YU K, CHEN C, et al. Dynamic graph learning with content-guided spatial-frequency relation reasoning for deepfake detection[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 7278-7287.
[31] DONG S C, WANG J, JI R H, et al. Implicit identity leakage: the stumbling block to improving deepfake detection generalization[C]//Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2023: 3994-4004.
[32] 李颖, 边山, 王春桃, 等. CNN结合Transformer的深度伪造高效检测[J]. 中国图象图形学报, 2023, 28(3): 804-819.
LI Y, BIAN S, WANG C T, et al. CNN and Transformer-coordinated deepfake detection[J]. Journal of Image and Graphics, 2023, 28(3): 804-819.
[33] BA Z J, LIU Q Y, LIU Z G, et al. Exposing the deception: uncovering more forgery clues for deepfake detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2024, 38(2): 719-728.
[34] SHIOHARA K, YAMASAKI T. Detecting deepfakes with self-blended images[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2022: 18699-18708.
[35] SUN K, YAO T P, CHEN S, et al. Dual contrastive learning for general face forgery detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2022, 36(2): 2316-2324.
[36] ZHUANG W Y, CHU Q, TAN Z T, et al. UIA-ViT: unsupervised inconsistency-aware method based on vision transformer for face forgery detection[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 391-407.
[37] GUO Y, ZHEN C, YAN P F. Controllable guide-space for generalizable face forgery detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 20761-20770.
[38] YAN Z Y, ZHANG Y, FAN Y B, et al. UCF: uncovering common features for generalizable deepfake detection[C]//Proceedings of the 2023 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2023: 22355-22366.
[39] MARRA F, GRAGNANIELLO D, VERDOLIVA L, et al. Do GANs leave artificial fingerprints?[C]//Proceedings of the 2019 IEEE Conference on Multimedia Information Processing and Retrieval. Piscataway: IEEE, 2019: 506-511.
[40] DING Y Z, THAKUR N, LI B X. Does a GAN leave distinct model-specific fingerprints?[C]//British Machine Vision Conference, 1997.
[41] BUI T, YU N, COLLOMOSSE J. RepMix: representation mixing for robust attribution of synthesized images[C]//Proceedings of the 17th European Conference on Computer Vision. Cham: Springer, 2022: 146-163.
[42] CIFTCI U A, DEMIR I. How do deepfakes move? Motion magnification for deepfake source detection[EB/OL]. [2023-11-26]. https://arxiv.org/abs/2212.14033.
[43] NARAYAN K, AGARWAL H, THAKRAL K, et al. DeePhy: on deepfake phylogeny[EB/OL]. [2023-11-26]. https://arxiv.org/abs/2209.09111.
[44] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 5998-6008.
[45] CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[C]//Proceedings of the 16th European Conference on Computer Vision. Cham: Springer, 2020: 213-229.
[46] JAEGLE A, BORGEAUD S, ALAYRAC J B, et al. Perceiver IO: a general architecture for structured inputs & outputs[EB/OL]. [2023-11-26]. https://arxiv.org/abs/2107.14795.
[47] CHANG F, LIN C C, LU C J, et al. Adaptive prototype learning algorithms: theoretical and experimental studies[J]. Journal of Machine Learning Research, 2006, 7(10): 2125-2148.
[48] YANG H M, ZHANG X Y, YIN F, et al. Convolutional prototype network for open set recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(5): 2358-2370.
[49] SNELL J, SWERSKY K, ZEMEL R. Prototypical networks for few-shot learning[C]//Advances in Neural Information Processing Systems 30, Long Beach, Dec 4-9, 2017: 4077-4087.
[50] GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[J]. The Journal of Machine Learning Research, 2016, 17(1): 2096-2030.
[51] DENG J K, GUO J, VERVERAS E, et al. RetinaFace: single-shot multi-level face localisation in the wild[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 5202-5211.
[52] TAN M, LE Q. EfficientNet: rethinking model scaling for convolutional neural networks[C]//Proceedings of the 36th International Conference on Machine Learning, 2019: 6105-6114.
[53] VAN DER MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9: 2579-2605. |