Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (3): 802-817.DOI: 10.3778/j.issn.1673-9418.2405025

• Network·Security • Previous Articles     Next Articles

Local Differential Privacy Location Protection for Mobile Terminals Based on Huffman Coding

YAN Yan, LYU Yaqin, LI Feifei   

  1. School of Computer and Communication, Lanzhou University of Technology, Lanzhou 730050, China
  • Online:2025-03-01 Published:2025-02-28

基于Huffman编码的移动终端本地差分隐私位置保护

晏燕,吕雅琴,李飞飞   

  1. 兰州理工大学 计算机与通信学院,兰州 730050

Abstract: The location information of mobile terminals is closely linked to personal privacy, which may threaten users’ life and property safety if leaked. Local differential privacy model provides strict privacy protection effect, allows users to handle and protect sensitive information according to their personal needs, and avoids the dependence on third-party servers. In view of the poor flexibility on the user side and severe loss of perturbation location quality in current local differential privacy location protection methods, a local differential privacy location protection method for mobile terminals based on Huffman encoding is proposed. The mobile user submits the location privacy protection range according to personalized privacy needs, and the server side performs location encoding on demand and returns it to the user. Subsequently, the user selects the Huffman encoding of his region and performs local differential privacy perturbation on it to achieve the privacy protection of the original location. The server side determines where the user is located by decoding the received perturbed location encoding, and provides location-based services accordingly. Experiments on real location datasets demonstrate that the proposed method can provide better location availability and operational efficiency while achieving local differential privacy protection of users’ location.

Key words: location privacy protection, local differential privacy, Huffman coding, random response

摘要: 移动终端的位置信息与个人隐私紧密相连,一旦泄露可能威胁用户的生命和财产安全。本地化差分隐私模型提供了严格的隐私保护效果,允许用户根据个人需求处理和保护敏感信息,避免了对第三方服务器的依赖。针对现有本地化差分隐私位置保护方法用户端灵活性差、扰动位置质量损失严重等问题,提出了一种基于Huffman编码的移动终端本地差分隐私位置保护方法。移动用户根据个性化隐私需求提交位置隐私保护范围,服务器端按需进行位置编码并返回给用户。用户端选择所在区域的Huffman编码,并对其进行本地化差分隐私扰动以实现对原始位置的隐私保护。服务器端通过对接收的扰动位置进行解码来判断用户所处的区域,并据此提供基于位置的服务(location-based services,LBS)。在实际位置数据集合上的实验证明,所提方法能够在实现用户位置本地化差分隐私保护的基础上,提供更好的位置数据可用性和运行效率。

关键词: 位置隐私保护, 本地化差分隐私, Huffman编码, 随机响应