
Journal of Frontiers of Computer Science and Technology ›› 2025, Vol. 19 ›› Issue (8): 2024-2042.DOI: 10.3778/j.issn.1673-9418.2409085
• Frontiers·Surveys • Previous Articles Next Articles
ZHANG Yifei, LI Yanling, GE Fengpei
Online:2025-08-01
Published:2025-07-31
张亦菲,李艳玲,葛凤培
ZHANG Yifei, LI Yanling, GE Fengpei. Review of Legal Judgment Prediction Based on Graph Deep Learning[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2024-2042.
张亦菲, 李艳玲, 葛凤培. 基于图深度学习的司法判决预测综述[J]. 计算机科学与探索, 2025, 19(8): 2024-2042.
Add to citation manager EndNote|Ris|BibTeX
URL: http://fcst.ceaj.org/EN/10.3778/j.issn.1673-9418.2409085
| [1] XIAO C J, ZHONG H X, GUO Z P, et al. CAIL2018: a large-scale legal dataset for judgment prediction[EB/OL]. [2024-07-03]. https://arxiv.org/abs/1807.02478. [2] FENG Y, LI C Y, NG V. Legal judgment prediction: a survey of the state of the art[C]//Proceedings of the 31st International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2022: 5461-5469. [3] CUI J Y, SHEN X Y, WEN S C. A survey on legal judgment prediction: datasets, metrics, models and challenges[J]. IEEE Access, 2023, 11: 102050-102071. [4] 彭亚男, 尹华, 贺敏伟. 中文法律条文推荐深度学习方法综述[J]. 软件导刊, 2023, 22(12): 245-252. PENG Y N, YIN H, HE M W. Survey on Chinese law articles recommendation with deep learning[J]. Software Guide, 2023, 22(12): 245-252. [5] NAGEL S. Weighting variables in judicial prediction[J]. Modern Uses of Logic in Law, 1960, 2(3): 93-97. [6] LAWLOR R C. What computers can do: analysis and prediction of judicial decisions[J]. American Bar Association Journal, 1963, 49(4): 337-344. [7] ULMER S S. Quantitative analysis of judicial processes: some practical and theoretical applications[J]. Law and Contemporary Problems, 1963, 28(1): 164. [8] KEOWN R. Mathematical models for legal prediction[J]. Computer/Law Journal, 1980, 2(1): 829-830. [9] LIU C L, HSIEH C D. Exploring phrase-based classification of judicial documents for criminal charges in Chinese[C]//Proceedings of the 16th International Symposium on Foundations of Intelligent Systems. Berlin, Heidelberg: Springer, 2006: 681-690. [10] KATZ D M. Quantitative legal prediction-or-how I learned to stop worrying and start preparing for the data-driven future of the legal services industry[J]. Emory Law Journal, 2013, 62(4): 909-966. [11] ALETRAS N, TSARAPATSANIS D, PREO?IUC-PIETRO D, et al. Predicting judicial decisions of the European court of human rights: a natural language processing perspective[J]. PeerJ Computer Science, 2016, 2: e93. [12] ?ULEA O M, ZAMPIERI M,VELA M, et al. Predicting the law area and decisions of French supreme court cases[C]//Proceedings of the 2017 International Conference Recent Advances in Natural Language Processing, 2017: 716-722. [13] SADIQ FAREED M M, RAZA A, ZHAO N, et al. Predicting divorce prospect using ensemble learning: support vector machine, linear model, and neural network[J]. Computational Intelligence and Neuroscience, 2022(1): 3687598. [14] RAZA A, MUNIR K, ALMUTAIRI M, et al. Predicting employee attrition using machine learning approaches[J]. Applied Sciences, 2022, 12(13): 6424. [15] LUO B F, FENG Y S, XU J B, et al. Learning to predict charges for criminal cases with legal basis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2017: 2727-2736. [16] DEVLIN J, CHANG M W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North Amer-ican Chapter of the Association for Computational Linguistics. Stroudsburg: ACL, 2019: 4171-4186. [17] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[C]//Advances in Neural Information Processing Systems 33, 2020: 1877-1901. [18] GE J D, HUANG Y Y, SHEN X Y, et al. Learning fine-grained fact-article correspondence in legal cases[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 3694-3706. [19] HUANG Y, SHEN X, LI C, et al. Dependency learning for legal judgment prediction with a unified text-to-text transformer[EB/OL]. [2024-07-03]. https://arxiv.org/abs/2112.06370. [20] ZHONG H X, GUO Z P, TU C C, et al. Legal judgment prediction via topological learning[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 3540-3549. [21] WEI D, LIN L. An external knowledge enhanced multi-label charge prediction approach with label number learning[EB/OL]. [2024-07-03]. https://arxiv.org/abs/1907.02205. [22] YANG W M, JIA W J, ZHOU X J, et al. Legal judgment prediction via multi-perspective bi-feedback network[C]//Proceedings of the 28th International Joint Conference on Artificial Intelligence. Palo Alto: AAAI, 2019: 4085-4091. [23] HARRIS Z S. Distributional structure[J]. WORD, 1954, 10(2/3): 146-162. [24] BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. Journal of Machine Learning Research, 2003, 3: 1137-1155. [25] MARTINEAU J, FININ T. Delta TFIDF: an improved feature space for sentiment analysis[C]//Proceedings of the 2009 International AAAI Conference on Web and Social Media. Palo Alto: AAAI, 2009: 258-261. [26] MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2024-07-03]. https://arxiv.org/abs/1301.3781. [27] PENNINGTON J, SOCHER R, MANNING C. GloVe: global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2014: 1532-1543. [28] SHAHBAZ M, SURESH L, REXFORD J, et al. Elmo: source routed multicast for public clouds[J]. IEEE/ACM Transactions on Networking, 2020, 28(6): 2587-2600. [29] LECUN Y, BOSER B, DENKER J S, et al. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, 1(4): 541-551. [30] ZAREMBA W, SUTSKEVER I, VINYALS O. Recurrent neural network regularization[EB/OL]. [2024-07-03]. https:// arxiv.org/abs/2310.11042. [31] VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Advances in Neural Information Processing Systems 30, 2017: 5998-6008. [32] GEHRMANN S, DENG Y T, RUSH A. Bottom-up abstractive summarization[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2018: 4098-4109. [33] FILLMORE C J. The case for case[M]//Universals in linguistic theory. New York: Holt, Rinehart & Winston, 1968: 1-88. [34] PEARL J. Causal diagrams for empirical research[J]. Biometrika, 1995, 82(4): 669-688. [35] NIKOLIC M. Representation and reasoning: a causal model approach[D]. London: University College London, 2014. [36] SO F. Modelling causality in law=Modélisation de la causalité en droit[EB/OL]. [2024-07-03]. https://hdl.handle.net/1866/25170. [37] AL-FEDAGHI S. Diagrammatic modelling of causality and causal relations[EB/OL]. [2024-07-03]. https://arxiv.org/abs/ 2310.11042. [38] TIKKA S, HELSKE J, KARVANEN J. Clustering and structural robustness in causal diagrams[EB/OL]. [2024-07-03]. https://arxiv.org/abs/2111.04513. [39] 张虎, 张振, 范越, 等. 基于因果图分析的可解释司法判决预测方法研究[J]. 大数据, 2024, 10(2): 109-121. ZHANG H, ZHANG Z, FAN Y, et al. Research on interpretable legal judgment prediction method based on causal graph analysis[J]. Big Data Research, 2024, 10(2): 109-121. [40] CASTELLO J, REDMOND P, KUPER L. Inductive diagrams for causal reasoning[J]. Proceedings of the ACM on Programming Languages, 2024, 8: 529-554. [41] ZHAO Q, GUO R D, FENG X W, et al. Research on a decision prediction method based on causal inference and a multi-expert FTOPJUDGE mechanism[J]. Mathematics, 2022, 10(13): 2281. [42] IMBENS G W. Nonparametric estimation of average treatment effects under exogeneity: a review[J]. Review of Economics and Statistics, 2004, 86(1): 4-29. [43] ANDRILLON A, PIRRACCHIO R, CHEVRET S. Performance of propensity score matching to estimate causal effects in small samples[J]. Statistical Methods in Medical Research, 2020, 29(3): 644-658. [44] CAMPOS R, MANGARAVITE V, PASQUALI A, et al. YAKE! Keyword extraction from single documents using multiple local features[J]. Information Sciences, 2020, 509: 257-289. [45] OGARRIO J M, SPIRTES P, RAMSEY J. A hybrid causal search algorithm for latent variable models[C]//Proceedings of the 8th International Conference on Probabilistic Graphical Models. Cambridge: MIT Press, 2016: 368-379. [46] MADHUMITHA S, NADUVATH S. Graphs on groups in terms of the order of elements: a review[J]. Discrete Mathematics, Algorithms and Applications, 2024, 16(3): 2330003. [47] 李瑾. 基于因果推理和法条信息融合的罪名预测方法研究[D]. 秦皇岛: 燕山大学, 2023. LI J. Research on charge prediction method based on causal inference and law information fusion[D]. Qinhuangdao: Yanshan University, 2023. [48] GUO Y, LI Y L, GE F P, et al. Legal judgment prediction via fine-grained element graphs and external knowledge[C]//Proceedings of the 2024 International Joint Conference on Neural Networks. Piscataway: IEEE, 2024: 1-8. [49] FENSEL D, ?IM?EK U, ANGELE K, et al. Introduction: what is a knowledge graph[M]//Knowledge graphs: methodology, tools and selected use cases. Cham: Springer, 2020: 1-10. [50] 黄治纲, 谢新强, 邢铁军, 等. 基于司法案例知识图谱的类案推荐[J]. 南京大学学报(自然科学), 2021, 57(6): 1053-1063. HUANG Z G, XIE X Q, XING T J , et al. Case recommendation based on knowledge graph of judicial cases[J]. Journal of Nanjing University (Natural Science), 2021, 57(6): 1053-1063. [51] 杜文源. 基于知识图谱的刑事案件判决预测算法研究[D]. 厦门: 厦门大学, 2020. DU W Y. Research on judgment prediction algorithms of criminal cases based on domain knowledge graph[D]. Xiamen: Xiamen University, 2020. [52] 王文同. 知识引导的司法判决预测研究[D]. 济南: 山东大学, 2022. WANG W T. Knowledge-guided legal judgment prediction research[D]. Jinan: Shandong University, 2022. [53] GAO S, SA R N, LI Y L, et al. How legal knowledge graph can help predict charges for legal text[C]//Proceedings of the 2023 International Conference on Neural Information Processing. Singapore: Springer, 2023: 408-420. [54] SHI J M, GUO Q L, LIAO Y, et al. Legal-LM: knowledge graph enhanced large language models for law consulting[C]//Proceedings of the 20th International Conference on Advanced Intelligent Computing Technology and Applications. Singapore: Springer, 2024: 175-186. [55] LI J, SUN A X, HAN J L, et al. A survey on deep learning for named entity recognition[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(1): 50-70. [56] RABINER L R. A tutorial on hidden Markov models and selected applications in speech recognition[J]. Proceedings of the IEEE, 1989, 77(2): 257-286. [57] LAFFERTY J, MCCALLUM A, PEREIRA F. Conditional random fields: probabilistic models for segmenting and labeling sequence data[C]//Proceedings of the 18th International Conference on Machine Learning, 2001: 282-289. [58] HUANG Z H, XU W, YU K. Bidirectional LSTM-CRF models for sequence tagging[EB/OL]. [2024-07-06]. https://arxiv.org/abs/1508.01991. [59] 刘博法. 以“四个坚持” 把握好“三个善于” 实现“高质效办好每一个案件”[J]. 中国检察官, 2024(9): 7-8. LIU B F. Grasping “three masteries” with “four persistences” and realizing “running every case well with high quality and efficiency”[J]. The Chinese Procurators, 2024(9): 7-8. [60] HINTON G. Distilling the knowledge in a neural network[EB/OL]. [2024-07-06]. https://arxiv.org/abs/1503.02531. [61] YANG C, GUO Y X, XU Y, et al. Learning to distill graph neural networks[C]//Proceedings of the 16th ACM International Conference on Web Search and Data Mining. New York: ACM, 2023: 123-131. [62] LIU Y, BO D, SHI C. Graph distillation with eigenbasis matching[C]//Proceedings of the 41st International Conference on Machine Learning, 2024: 30702-30717. [63] XU N, WANG P H, CHEN L, et al. Distinguish confusing law articles for legal judgment prediction[C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2020: 3086-3095. [64] TIAN Y J, PEI S C, ZHANG X L, et al. Knowledge distillation on graphs: a survey[J]. ACM Computing Surveys, 2025, 57(8): 1-16. [65] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. [2024-07-19]. https://arxiv.org/abs/1609.02907. [66] 孙倩, 秦永彬, 黄瑞章, 等. 结合案件要素序列的罪名预测方法[J]. 大数据, 2021, 7(6): 30-40. SUN Q, QIN Y B, HUANG R Z, et al. Charge prediction method combined with case elements sequence[J]. Big Data Research, 2021, 7(6): 30-40. [67] GAN J Z, HU R Y, MO Y J, et al. Multigraph fusion for dynamic graph convolutional network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 35(1): 196-207. [68] RUIZ L, GAMA F, RIBEIRO A. Gated graph recurrent neural networks[J]. IEEE Transactions on Signal Processing, 2020, 68: 6303-6318. [69] ZHAO Q H, GAO T H, GUO N. LA-MGFM: a legal judgment prediction method via sememe-enhanced graph neural networks and multi-graph fusion mechanism[J]. Information Processing & Management, 2023, 60(5): 103455. [70] WANG X, LIU N, HAN H, et al. Self-supervised heterogeneous graph neural network with co-contrastive learning[C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2021: 1726-1736. [71] 栾厚蕴. 基于深度学习的法律判决预测系统的研究与实现[D]. 北京: 北京邮电大学, 2023. LUAN H Y. Research and implementation of legal judgement prediction system based on deep learning[D]. Beijing: Beijing University of Posts and Telecommunications, 2023. [72] BING R, YUAN G, ZHU M, et al. Heterogeneous graph neural networks analysis: a survey of techniques, evaluations and applications[J]. Artificial Intelligence Review, 2023, 56(8): 8003-8042. [73] PAN W J, CHEN Y, LIU Z H, et al. Circumstance-aware graph neural network for legal judgment prediction[C]//Proceedings of the 2023 International Conference on Asian Language Processing. Piscataway: IEEE, 2023: 332-337. [74] LIU Y F, WU Y Q, ZHANG Y T, et al. ML-LJP: multi-law aware legal judgment prediction[C]//Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2023: 1023-1034. [75] TONG S X, YUAN J L, ZHANG P L, et al. Legal judgment prediction via graph boosting with constraints[J]. Information Processing & Management, 2024, 61(3): 103663. [76] CHEN Y P, ROHRBACH M, YAN Z C, et al. Graph-based global reasoning networks[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2019: 433-442. [77] LIU Y K, FENG S, WANG D L, et al. A graph reasoning network for multi-turn response selection via customized pre-training[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(15): 13433-13442. [78] JI Z, CHEN K X, HE Y Q, et al. Heterogeneous memory enhanced graph reasoning network for cross-modal retrieval[J]. Science China Information Sciences, 2022, 65(7): 172104. [79] WANG J W, LE Y Q, CAO D, et al. Graph reasoning with supervised contrastive learning for legal judgment prediction[J]. IEEE Transactions on Neural Networks and Learning Systems, 2025, 36(2): 2801-2815. [80] YU W J, SUN Z X, XU J, et al. Explainable legal case matching via inverse optimal transport-based rationale extraction[C]//Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2022: 657-668. [81] FENG Y, LI C Y, NG V. Legal judgment prediction via event extraction with constraints[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 648-664. [82] LI H T, SHAO Y Q, WU Y Y, et al. LeCaRDv2: a large-scale Chinese legal case retrieval dataset[C]//Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2024: 2251-2260. [83] HU Z, LI X, TU C, et al. Few-shot charge prediction with discriminative legal attributes[C]//Proceedings of the 27th International Conference on Computational Linguistics. Stroudsburg: ACL, 2018: 487-498. [84] YANG Y M. An evaluation of statistical approaches to text categorization[J]. Information Retrieval, 1999, 1(1): 69-90. [85] POWERS D M W. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation[J]. Machine Learning Technologies, 2011, 2(1): 37-63. [86] FISHER R A. The use of multiple measurements in taxonomic problems[J]. Annals of Eugenics, 1936, 7(2): 179-188. [87] SONG H O, XIANG Y, JEGELKA S, et al. Deep metric learning via lifted structured feature embedding[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2016: 4004-4012. [88] ROUGE L C Y. A package for automatic evaluation of summaries[C]//Proceedings of the 2004 Workshop on Text Summarization of ACL. Stroudsburg: ACL, 2004: 74-81. [89] JACCARD P. The distribution of the flora in the alpine zone[J]. New Phytologist, 1912, 11(2): 37-50. [90] 侯壹凡. 基于全局特征和局部特征融合的法条预测方法研究[D]. 湘潭: 湘潭大学, 2022. HOU Y F. Research on the method of law prediction based on feature fusion of global features and local features[D]. Xiangtan: Xiangtan University, 2022. [91] ZHANG Z P, LU S T, HUANG Z F, et al. ASGNN: graph neural networks with adaptive structure[EB/OL]. [2024-07-19]. https://arxiv.org/abs/2210.01002. [92] RIBEIRO M T, SINGH S, GUESTRIN C. “Why should I trust you?”: explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 1135-1144. [93] WU Y Q, ZHOU S Y, LIU Y F, et al. Precedent-enhanced legal judgment prediction with LLM and domain-model collaboration[C]//Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2023: 12060-12075. [94] DENG C L, MAO K L, ZHANG Y Y, et al. Enabling discriminative reasoning in LLMs for legal judgment prediction[EB/OL]. [2024-11-03]. https://arxiv.org/abs/2407. 01964. |
| No related articles found! |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
/D:/magtech/JO/Jwk3_kxyts/WEB-INF/classes/