[1] KUMAR C, PRAJAPATI S S, VERMA R K. A survey of various lightweight cryptography block ciphers for IoT devices[C]//Proceedings of the 2022 IEEE International Conference on Current Development in Engineering and Technology. Piscataway: IEEE, 2022: 1-6.
[2] DEVI M, MAJUMDER A. Side-channel attack in Internet of things: a survey[M]//Applications of Internet of things. Singapore: Springer, 2021: 213-222.
[3] BONEH D, DEMILLO R A, LIPTON R J. On the importance of checking cryptographic protocols for faults[C]//Proceedings of the 1997 International Conference on the Theory and Application of Cryptographic Techniques. Berlin, Heidelberg: Springer, 1997: 37-51.
[4] BIHAM E, SHAMIR A. Differential fault analysis of secret key cryptosystems[C]//Proceedings of the 17th Annual International Cryptology Conference. Berlin, Heidelberg: Springer, 1997: 513-525.
[5] ZHANG F, ZHANG Y R, JIANG H L, et al. Persistent fault attack in practice[J]. IACR Transactions on Cryptographic Hardware and Embedded Systems, 2020, 2020(2): 172-195.
[6] WEI Y C, WANG X R, ZHOU Z C. Integral fault analysis of Midori64 lightweight cipher[C]//Proceedings of the 2021 International Conference on Network Communication and Information Security, 2022: 87-92.
[7] LE D P, LU R X, GHORBANI A A. Improved fault analysis on SIMECK ciphers[J]. Journal of Cryptographic Engineering, 2022, 12(2): 169-180.
[8] MA X L, ZHANG L Z, WU L J, et al. Differential fault analysis on 3DES middle rounds based on error propagation[J]. Chinese Journal of Electronics, 2022, 31(1): 68-78.
[9] NAGELER M, DOBRAUNIG C, EICHLSEDER M. Information-combining differential fault attacks on DEFAULT[C]//Proceedings of the Annual International Conference on the Theory and Applications of Cryptographic Techniques. Cham: Springer, 2022: 168-191.
[10] XIAO H Y, WANG L F. Differential fault analysis on the key schedule of the LBlock algorithm[J]. IEEE Access, 2022, 10: 62402-62411.
[11] XIAO H Y, WANG L F. The differential fault analysis on block cipher KLEIN-96[J]. Journal of Information Security and Applications, 2022, 67: 103205.
[12] SALAM I, YAU W C, PHAN R C W, et al. Differential fault attacks on the lightweight authenticated encryption algorithm CLX-128[J]. Journal of Cryptographic Engineering, 2023, 13(3): 265-281.
[13] MONDAL S K, DEY P, ROY H S, et al. Improved fault analysis on subterranean 2.0[J]. IEEE Transactions on Computers, 2024, 73(6): 1631-1639.
[14] BEIERLE C, JEAN J, K?LBL S, et al. The SKINNY family of block ciphers and its low-latency variant MANTIS[C]//Proceedings of the 36th Annual International Cryptology Conference. Berlin, Heidelberg: Springer, 2016: 123-153.
[15] VAFAEI N, SAHA S, BAGHERI N, et al. Fault attack on SKINNY cipher[J]. Journal of Hardware and Systems Security, 2020, 4(4): 277-296.
[16] VAFAEI N, PORKAR M, RAMZANIPOUR H, et al. Practical differential fault analysis on SKINNY[J]. ISC International Journal of Information Security, 2017, 14: 9-19.
[17] 谢敏, 江家煜, 陈杰. SKINNY的差分故障攻击与ForkAE的密钥恢复攻击[J]. 密码学报(中英文), 2024, 11(3): 692-705.
XIE M, JIANG J Y, CHEN J. Differential fault attack on SKINNY and key recovery attack on ForkAE[J]. Journal of Cryptologic Research, 2024, 11(3): 692-705. |