Journal of Frontiers of Computer Science and Technology ›› 2013, Vol. 7 ›› Issue (6): 570-576.DOI: 10.3778/j.issn.1673-9418.1301005

Previous Articles    

Shape Feature Extraction Using Multi-Model Complex Network Model

ZHI Dapeng1, TANG Jin1,2+, JIANG Bo1, LUO Bin1,2   

  1. 1. School of Computer Science and Technology, Anhui University, Hefei 230601, China
    2. Key Lab of Industrial Image Processing & Analysis of Anhui Province, Hefei 230039, China
  • Online:2013-06-01 Published:2013-05-30

多模复杂网络模型的形状特征提取方法

郅大鹏1,汤  进1,2+,江  波1,罗  斌1,2   

  1. 1. 安徽大学 计算机科学与技术学院,合肥 230601
    2. 安徽省工业图像处理与分析重点实验室,合肥 230039

Abstract: Shape feature extraction is important in content based image recognition. Considering the variance of shape, this paper presents a new shape feature extraction method based on multi-model complex network. Firstly, an initial complex network is constructed with nodes corresponding to the boundary points and edges allocated with Euclidean and inner distances as weights existing between each node pairs. Then, this initial network is evolved based on Euclidean and inner distances, respectively. At last, some features are extracted from these sub-networks and further provided for the shape. Experimental results on both object classification and retrieval show that the proposed method is more robust compared with the single-model complex network model.

Key words: feature extraction, complex network, inner distance, dynamic evolution

摘要: 物体形状的特征提取是图像检索与识别中的重要研究内容。考虑到物体形状的多变性,给出了一种基于多模复杂网络模型的形状特征提取方法。首先,以形状边界轮廓点作为节点,利用节点之间的欧氏和内部距离作为连接顶点之间边的权值构建初始网络模型;然后, 分别基于欧氏距离和内部距离对初始网络进行演化;最后,从子网络中提取特征,并进一步用于形状描述。检索与分类实验表明,所提方法相比于传统的单一模态下的复杂网络特征提取方法具有更强的鲁棒性。

关键词: 特征提取, 复杂网络, 内部距离, 动态演化