计算机科学与探索 ›› 2017, Vol. 11 ›› Issue (8): 1279-1287.DOI: 10.3778/j.issn.1673-9418.1607034
丁玉连,雷秀娟+,代 才
DING Yulian, LEI Xiujuan+, DAI Cai
摘要: 蛋白质复合物的检测对人类了解细胞组织和疾病预测起着至关重要的作用。然而,当前的蛋白质复合物识别方法的准确率低,对噪音敏感等缺点导致其识别效果并不理想。提出了一种新的蛋白质复合物识别方法PIOC(pigeon-inspired optimization clustering)。该方法根据蛋白质复合物的特性提出了簇的紧密邻接点概念和附件对核心的附着度概念,基于这两个概念,PIOC通过模拟鸽子优化算法中鸽子寻找目的地的过程来识别蛋白质复合物;结合鸽子算法中先全局搜索再局部搜索的特性和蛋白质复合物的核心附件结构,先通过鸽子算法中地图罗盘操作的全局搜索形成蛋白质复合物的核心,再通过鸽子算法地标操作的局部搜索将附件蛋白质聚集到核心簇中形成蛋白质复合物。基于酵母蛋白质相互作用网络DIP上的实验表明,PIOC比当前其他的蛋白质复合物识别算法能更有效地识别蛋白质复合物。