计算机科学与探索 ›› 2010, Vol. 4 ›› Issue (1): 82-88.DOI: 10.3778/j.issn.1673-9418.2010.01.009

• 学术研究 • 上一篇    下一篇

以图频繁集为基础的核心节点发现

宋文军1,2,刘红星1,2,王崇骏1,2+,谢俊元1,2   

  1. 1. 南京大学 计算机软件新技术国家重点实验室,南京 210093
    2. 南京大学 计算机科学与技术系,南京 210093
  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2010-01-15 发布日期:2010-01-15
  • 通讯作者: 王崇骏

Core Nodes Detection Based on Frequent Itemsets of Graph

SONG Wenjun1,2, LIU Hongxing1,2, WANG Chongjun1,2+, XIE Junyuan1,2   

  1. 1. National Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210093, China
    2. Department of Computer Science and Technology, Nanjing University, Nanjing 210093, China
  • Received:1900-01-01 Revised:1900-01-01 Online:2010-01-15 Published:2010-01-15
  • Contact: WANG Chongjun

摘要: 结合基于图的关联规则挖掘和双向搜索的策略,产生最大频繁项集,从而提出基于图的最大频繁项集(graph based maximum frequent set,GBMFS)生成算法。运用此算法,结合社会网络的动态特征,发现社会网络中所存在的团伙的核心成员。最后,在实际系统中对相关的算法进行了验证。

关键词: 最大频繁项集, 图, 核心节点

Abstract: This paper concentrates on the detection of core nodes in the crime network, but as a basis, it models the network as a graph and presents the algorithm of GBMFS (graph based maximum frequent set), which combines the mining of association rules with bidirectional search strategy and can be used to discover the most frequent itemsets in a graph. After getting several snaps of social network in different time and integrating the discovery of quasi-clique with GBMFS, the algorithm of discovering core nodes in these snaps is achieved. At last the algorithm is applied in a real system.

Key words: maximum frequent itemsets, graph, core node

中图分类号: