计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (5): 1155-1168.DOI: 10.3778/j.issn.1673-9418.2011043

• 图形图像 • 上一篇    下一篇

视觉显著区域和主动轮廓结合的图像分割算法

何亚茹1,2, 葛洪伟1,2,+()   

  1. 1.江南大学 江苏省模式识别与计算机智能工程实验室,江苏 无锡 214122
    2.江南大学 人工智能与计算机学院,江苏 无锡 214122
  • 收稿日期:2020-11-13 修回日期:2021-01-20 出版日期:2022-05-01 发布日期:2022-05-19
  • 通讯作者: + E-mail: ghw8601@163.com
  • 作者简介:何亚茹(1994—),女,河北石家庄人,硕士研究生,CCF学生会员,主要研究方向为计算机视觉。
    葛洪伟(1967—),男,江苏无锡人,博士,教授,博士生导师,主要研究方向为人工智能与模式识别、图像及视频的处理与分析等。
  • 基金资助:
    江苏省研究生创新计划项目(KYLX16_0781);江苏高校优势学科建设工程资助项目

Image Segmentation Algorithm Combining Visual Salient Regions and Active Contour

HE Yaru1,2, GE Hongwei1,2,+()   

  1. 1. Jiangsu Provincial Engineering Laboratory of Pattern Recognition and Computational Intelligence, Jiangnan Univer-sity, Wuxi, Jiangsu 214122, China
    2. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2020-11-13 Revised:2021-01-20 Online:2022-05-01 Published:2022-05-19
  • About author:HE Yaru, born in 1994, M.S. candidate, student member of CCF. Her research interest is computer vision.
    GE Hongwei, born in 1967, Ph.D., professor, Ph.D. supervisor. His research interests include artificial intelligence and pattern recognition, image and video processing and analysis, etc.
  • Supported by:
    Innovation Program for Graduate of Jiangsu Province(KYLX16_0781);Priority Academic Development Program of Jiangsu Higher Education Institutions

摘要:

传统区域主动轮廓模型在分割弱边缘图像时,演化曲线受背景干扰,易陷入局部极值导致演化速度缓慢;且由于局部项仅考虑空间信息,无法更好保留目标边界,影响分割精度。针对上述问题,首先利用改进的显著性检测方法,对待分割图像进行预处理操作,获取目标候选区域,自动设置初始化轮廓曲线,并将获取的目标先验信息与待分割图像中具有最大对比度的位图相结合,设计自适应符号函数,对优化LoG能量项进行加权,以线性方式融合到RSF模型中,增强模型自适应能力;其次设计新的局部灰度测度,与局部核函数相结合,改进局部能量项,提高模型在弱边缘处的敏感程度,准确定位目标边界。实验结果表明,该模型能够自动设置初始化轮廓,并有效保留目标边缘细节,视觉及定量实验结果证明了该模型优于目前一些主流的主动轮廓模型。

关键词: 视觉显著性检测, 自适应符号函数, 局部灰度测度, 主动轮廓模型, 图像分割

Abstract:

When the traditional regional active contour model is used to segment the weak edge image, the evolution curve is subject to background interference, and it is easy to fall into the local extreme value, which leads to slow evolution speed. Moreover, as the local term only considers the spatial information, it cannot better retain the target boundary, which affects the segmentation accuracy. To solve the above problems, firstly, this paper uses the improved saliency detection algorithm to preprocess the original image, obtains the target candidate regions and automatically sets the initial contour curve. In addition, the obtained priori information of the target is combined with the bitmap with the maximum contrast in the image to be segmented. An adaptive symbolic function is designed to weight the optimized LoG (Laplacian of Gaussian) energy terms, in a linear fashion into RSF (region-scalable fitting) model, improving the adaptive ability of the model. Secondly, a new local grayscale measure is proposed, which is combined with local kernel function to improve the local energy term. It can improve the sensitivity of the model at the weak edge, and accurately locate the target boundary. Experimental results show that this model can automatically set the initial contour and effectively retain the target edge details. Visual and quantitative experimental results show that this model is superior to some mainstream active contour models.

Key words: visual saliency detection, adaptive symbolic function, local gray measure, active contour model, image segmentation

中图分类号: