[1] BISWAS A, CHANDRAKASAN A P. CONV-SRAM: an energy-efficient SRAM with in-memory dot-product compu- tation for low-power convolutional neural networks[J]. IEEE Journal of Solid-State Circuits, 2019, 54(1): 217-230.
[2] ZHANG Z G, HUANG Y, EN Y F, et al. Investigation of maximum proton energy for qualified ground-based evaluation of single-event effects in SRAM devices[J]. Nuclear Science and Techniques, 2019, 30(3): 97-104.
[3] VIPUL B, KUMAR P, PANDEY N, et al. A boosted nega-tive bit-line SRAM with write-assisted cell in 45 nm CMOS technology[J]. Journal of Semiconductors, 2018, 39(2): 55-66.
[4] XIE Q, CHEN C, LIU M, et al. Short-channel effects on the static noise margin of 6T SRAM composed of 2D semi-conductor MOSFETS[J]. Science China Information Sciences, 2019, 62(6): 94-101.
[5] SHAFAEI A, PEDRAM M. Energy-efficient cache memories using a dual- Vt 4T SRAM cell with read-assist techniques [C]//Proceedings of the Automation & Test in Europe Con-ference & Exhibition, Dresden, Mar 14-18, 2016. Piscataway: IEEE, 2016: 457-462.
[6] SANAPALA K, SAKTHI VEL R, YEO S S. Schmitt trigger-based single-ended 7T SRAM cell for Internet of things (IoT) applications[J]. The Journal of Supercomputing, 2018, 74(5): 1-10.
[7] VISHAL S, MAISAGALL G, POORAM S, et al. A robust, ultra low-power, data-dependent-power-supplied 11T SRAM cell with expanded read/write stabilities for internet-of-things applications[J]. Analog Integrated Circuits and Signal Pro-cessing, 2019, 98(2): 331-346.
[8] JELOKA S, AKESH N B, SYL VESTER D, et al. A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-memory[J]. IEEE Journal of Solid-State Circuits, 2016, 51(4): 1009-1021.
[9] KOO J, KIM E, YOO S, et al. Configurable BCAM/TCAM based on 6T SRAM bit cell and enhanced match line clamping[C]//Proceedings of the 2019 IEEE Asian Solid-State Circuits Conference, Macau, China, Nov 4-6, 2019. Piscataway: IEEE, 2019: 223-226.
[10] CHEN W H, CHEN C F, CHEN Y J, et al. A dual-split-controlled 4P2N 6T SRAM in monolithic 3D-ICs with enhanced read speed and cell stability for IoT applications[J]. IEEE Electron Device Letters, 2018, 39(8): 1167-1170.
[11] GAO G, YIN S J, YU Z X. Study on sub-threshold current characteristics of MOSFET based on physical state of semiconductor surface[J]. Journal of Beijing Information Science & Technology University, 2019, 34(2): 19-22.
高歌, 殷树娟, 于肇贤. 基于半导体物理的MOSFET亚阈区电流特性研究[J]. 北京信息科技大学学报(自然科学版), 2019, 34(2): 19-22.
[12] KANG M G, GONUGONDLA S K, PATIL A, et al. A multi-functional in-memory inference processor using a stan-dard 6T SRAM array[J]. IEEE Journal of Solid-State Circuits, 2018, 53(2): 642-655.
[13] KANG M G, SHANBHAG N R. In-memory computing architectures for sparse distributed memory[J]. IEEE Trans-actions on Biomedical Circuits & Systems, 2016, 10(4): 855-863.
[14] ZHANG J T, ZHUO W, VERMA N. In-memory computation of a machine-learning classifier in a standard 6T SRAM array[J]. IEEE Journal of Solid-State Circuits, 2017, 52(4): 915-924.
[15] SRINIVASA S R, LI X Q, CHANG M F, et al. Compact 3-D-SRAM memory with concurrent row and column data access capability using sequential monolithic 3-D integration[J]. IEEE Transactions on Very Large Scale Integration Systems, 2018, 26(4): 671-683.
[16] GUPTA S, GUPTA K, CALHOUN B H, et al. Low-power near-threshold 10T SRAM bit cells with enhanced data-independent read port leakage for array augmentation in 32-nm CMOS[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66(3): 978-988. |