计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (9): 2132-2142.DOI: 10.3778/j.issn.1673-9418.2012063
收稿日期:
2020-12-17
修回日期:
2021-04-08
出版日期:
2022-09-01
发布日期:
2021-04-19
通讯作者:
+ E-mail: 1242161005@qq.com作者简介:
刘腊梅(1979—),女,硕士,讲师,CCF会员,主要研究方向为图形图像处理。基金资助:
LIU Lamei, WANG Xiaona(), LIU Wanjun, QU Haicheng
Received:
2020-12-17
Revised:
2021-04-08
Online:
2022-09-01
Published:
2021-04-19
About author:
LIU Lamei, born in 1979, M.S., lecturer, member of CCF. Her research interests include graphics and image processing.Supported by:
摘要:
针对深度学习图像语义分割方法中存在分割精度低、损失率高的问题,提出了融合转置卷积与深度残差图像语义分割方法。首先,为了解决神经网络深度增加引起分割精度下降、收敛速度慢的问题,设计一种深度残差学习模块来提升网络的训练效率和收敛速度;然后,为了使上采样过程与特征提取过程中特征图融合精度更高,将深度残差U-net模型中UpSampling2D和转置卷积两种上采样方式进行拼接,形成新的上采样模块;最后,针对网络训练过程中训练集与验证集之间存在的权值过度拟合问题,在网络的跳跃连接层引入Dropout,增强了网络的学习能力。在CamVid数据集上对算法的性能进行了证明,算法语义分割精度达到89.93%,损失率降到0.23,与U-net模型相比,验证集精度提升了13.13个百分点,损失率降低了1.20,优于当前的图像语义分割方法。所提出的图像语义分割新模型,综合了U-net模型的优点,使得图像语义分割精度更高,语义分割的效果更好,有效提升了算法的鲁棒性。
中图分类号:
刘腊梅, 王晓娜, 刘万军, 曲海成. 融合转置卷积与深度残差图像语义分割方法[J]. 计算机科学与探索, 2022, 16(9): 2132-2142.
LIU Lamei, WANG Xiaona, LIU Wanjun, QU Haicheng. Image Semantic Segmentation Method with Fusion of Transposed Convolution and Deep Residual[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2132-2142.
Model | Loss | Accuracy/% | val_loss | val_acc/% |
---|---|---|---|---|
U-net+BN | 0.305 8 | 87.31 | 0.304 7 | 85.60 |
ResUnet | 0.209 0 | 89.39 | 0.292 4 | 86.57 |
DResUnet | 0.181 1 | 90.79 | 0.307 5 | 86.95 |
表1 改进的残差模块算法比较
Table 1 Comparison of improved residual module algorithm
Model | Loss | Accuracy/% | val_loss | val_acc/% |
---|---|---|---|---|
U-net+BN | 0.305 8 | 87.31 | 0.304 7 | 85.60 |
ResUnet | 0.209 0 | 89.39 | 0.292 4 | 86.57 |
DResUnet | 0.181 1 | 90.79 | 0.307 5 | 86.95 |
Model | Loss | Accuracy/% | val_loss | val_acc/% |
---|---|---|---|---|
U-net | 0.907 4 | 81.02 | 1.430 0 | 76.80 |
U-net+TC | 0.305 8 | 85.31 | 0.471 3 | 81.62 |
ResUnet+TC | 0.195 4 | 90.39 | 0.287 5 | 86.57 |
DResUnet+TC | 0.169 8 | 91.18 | 0.265 3 | 87.79 |
表2 融合转置卷积模块算法比较
Table 2 Module algorithm comparison with transpose convolution
Model | Loss | Accuracy/% | val_loss | val_acc/% |
---|---|---|---|---|
U-net | 0.907 4 | 81.02 | 1.430 0 | 76.80 |
U-net+TC | 0.305 8 | 85.31 | 0.471 3 | 81.62 |
ResUnet+TC | 0.195 4 | 90.39 | 0.287 5 | 86.57 |
DResUnet+TC | 0.169 8 | 91.18 | 0.265 3 | 87.79 |
Model | Loss | Accuracy/% | val_loss | val_acc/% |
---|---|---|---|---|
ResUnet+TC+DO | 0.190 4 | 90.53 | 0.399 5 | 85.12 |
DResUnet+DO | 0.184 5 | 90.66 | 0.323 6 | 85.45 |
Ours | 0.176 9 | 90.92 | 0.234 6 | 89.93 |
表3 Dropout模块算法比较
Table 3 Algorithm comparison of Dropout module
Model | Loss | Accuracy/% | val_loss | val_acc/% |
---|---|---|---|---|
ResUnet+TC+DO | 0.190 4 | 90.53 | 0.399 5 | 85.12 |
DResUnet+DO | 0.184 5 | 90.66 | 0.323 6 | 85.45 |
Ours | 0.176 9 | 90.92 | 0.234 6 | 89.93 |
Step_per_epoch | epoch | Loss | Accuracy/% |
---|---|---|---|
100 | 30 | 0.302 2 | 88.47 |
300 | 30 | 0.302 7 | 87.17 |
400 | 30 | 0.314 4 | 87.85 |
200 | 10 | 0.403 8 | 85.33 |
200 | 20 | 0.554 7 | 81.03 |
200 | 40 | 0.391 8 | 83.65 |
200 | 30 | 0.234 6 | 89.93 |
表4 不同迭代次数下损失率与精度对比
Table 4 Comparison of loss and accuracy of different iterations
Step_per_epoch | epoch | Loss | Accuracy/% |
---|---|---|---|
100 | 30 | 0.302 2 | 88.47 |
300 | 30 | 0.302 7 | 87.17 |
400 | 30 | 0.314 4 | 87.85 |
200 | 10 | 0.403 8 | 85.33 |
200 | 20 | 0.554 7 | 81.03 |
200 | 40 | 0.391 8 | 83.65 |
200 | 30 | 0.234 6 | 89.93 |
Model | Loss | Accuracy/% |
---|---|---|
U-net | 1.430 0 | 76.80 |
SegNet | 0.889 3 | 77.06 |
DResUnet | 0.307 5 | 86.95 |
Ours | 0.234 6 | 89.93 |
表5 相同条件下不同算法语义分割精度和损失率
Table 5 Accuracy and loss of different algorithms for semantic segmentation under same conditions
Model | Loss | Accuracy/% |
---|---|---|
U-net | 1.430 0 | 76.80 |
SegNet | 0.889 3 | 77.06 |
DResUnet | 0.307 5 | 86.95 |
Ours | 0.234 6 | 89.93 |
模型 | 基础模型 | 精度/% |
---|---|---|
SegNet | — | 77.06 |
DenconvNet | — | 85.89 |
BiseNet | Xception | 88.82 |
LEDNet | — | 87.09 |
ASN | — | 88.40 |
Ours | — | 89.93 |
表6 CamVid数据集下最新语义分割算法对比
Table 6 Comparison of latest semantic segmentation algorithms based on CamVid dataset
模型 | 基础模型 | 精度/% |
---|---|---|
SegNet | — | 77.06 |
DenconvNet | — | 85.89 |
BiseNet | Xception | 88.82 |
LEDNet | — | 87.09 |
ASN | — | 88.40 |
Ours | — | 89.93 |
[1] |
YU H S, YANG Z E, TAN L, et al. Methods and datasets on semantic segmentation: a review[J]. Neurocomputing, 2018, 304(23): 82-104.
DOI URL |
[2] |
WANG X, MA H M, YOU S D. Deep clustering for weakly-supervised semantic segmentation in autonomous driving scenes[J]. Neurocomputing, 2020, 381: 20-28.
DOI URL |
[3] |
徐辉, 祝玉华, 甄彤, 等. 深度神经网络图像语义分割方法综述[J]. 计算机科学与探索, 2021, 15(1): 47-59.
DOI |
XU H, ZHU Y H, ZENG T, et al. Survey of image semantic segmentation methods based on deep neural network[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(1): 47-59. | |
[4] |
LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(4): 640-651.
DOI URL |
[5] | RONNEBERGER O, FISCHER P, BROX T. U-Net: con-volutional networks for biomedical image segmentation[C]// LNCS 9351: Proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Oct 5-9, 2015. Cham: Springer, 2015: 234-241. |
[6] |
BADRINARAYANAN V, KENDELL A, CIPOLLA R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(12): 2481-2495.
DOI URL |
[7] | CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. arXiv:1412.7062, 2014. |
[8] |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 40(4): 834-848.
DOI URL |
[9] | ZENG T L, LIU J. Follicular ultrasound image segmentation based on improved Deeplabv3[C]// Proceedings of the 2019 3rd International Conference on Computer Engineering,Information Science and Internet Technology, Sanya, Oct 30-31, 2019: 562-567. |
[10] | CHEN L C, ZHU Y K, PAPANDROU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 833-851. |
[11] | FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition,Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 3146-3154. |
[12] | ZHAO H S, QI X J, SHEN X Y, et al. ICNet for real-time semantic segmentation on high-resolution images[C]// LNCS 11207: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 418-434. |
[13] | PASZKE A, CHAURASIA A, KIM S, et al. ENet: a deep neural network architecture for real-time semantic segmentation[J]. arXiv:1606.02147, 2016. |
[14] |
ZHANG Z, LIU Q, WANG Y. Road extraction by deep residual U-net[J]. IEEE Geoscience and Remote Sensing Letters, 2018, 15(5): 749-753.
DOI URL |
[15] | ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: a nested U-Net architecture for medical image segmentation[C]// LNCS 11045: Proceedings of the 4th International Workshop and 8th International Workshop on Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Granada, Sep 20, 2018. Cham: Springer, 2018: 3-11. |
[16] |
LIU Z, CAO Y, WANG Y, et al. Computer vision-based concrete crack detection using U-net fully convolutional networks[J]. Automation in Construction, 2019, 104: 129-139.
DOI URL |
[17] | HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778. |
[18] | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. arXiv:1207.0580, 2012. |
[19] |
BROSTOW G J, FAUQUEUR J, CIPOLLA R. Semantic object classes in video: a high-definition ground truth database[J]. Pattern Recognition Letters, 2008, 30(2): 88-97.
DOI URL |
[20] | JÉGOU S, DROZDZAL M, VÁZQUEZ D, et al. The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 1175-1183. |
[21] | YU C Q, WANG J B, PENG C, et al. BiSeNet: bilateral segmentation network for real-time semantic segmentation[C]// LNCS 11211: Proceedings of the 15th European Conference on Computer Vision, Munich, Sep 8-14, 2018. Cham: Springer, 2018: 334-349. |
[22] | WANG Y, ZHOU Q, LIU J, et al. LEDNet: a lightweight encoder-decoder network for real-time semantic segmentation[C]// Proceedings of the 2019 IEEE International Conference on Image Processing, Taipei, China, Sep 22-25, 2019. Piscataway: IEEE, 2019: 1860-1864. |
[23] | 项建弘, 徐昊. 基于深度学习的图像语义分割算法研究[J]. 计算机应用研究, 2020, 37(S2): 316-317. |
XIANG J H, XU H. Research on image semantic segmentation algorithm based on deep learning[J]. Application Research of Computers, 2020, 37(S2): 316-317. |
[1] | 赵小强, 徐慧萍. 分级特征融合的图像语义分割[J]. 计算机科学与探索, 2021, 15(5): 949-957. |
[2] | 徐辉, 祝玉华, 甄彤, 李智慧. 深度神经网络图像语义分割方法综述[J]. 计算机科学与探索, 2021, 15(1): 47-59. |
[3] | 侯永宏,吕晓冬,陈艳芳,赵健,李器宇,陈浩. 深度神经网络在森林步道视觉识别中的应用[J]. 计算机科学与探索, 2019, 13(2): 263-274. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||