计算机科学与探索 ›› 2022, Vol. 16 ›› Issue (11): 2565-2574.DOI: 10.3778/j.issn.1673-9418.2103027
收稿日期:
2021-03-26
修回日期:
2021-05-14
出版日期:
2022-11-01
发布日期:
2021-05-18
通讯作者:
+ E-mail: taowan@ahpu.edu.cn作者简介:
周祺(1997—),女,安徽宿州人,硕士研究生,主要研究方向为云计算、大数据处理。基金资助:
ZHOU Qi, TAO Wan+(), KONG Chao, CUI Baiting
Received:
2021-03-26
Revised:
2021-05-14
Online:
2022-11-01
Published:
2021-05-18
About author:
ZHOU Qi, born in 1997, M.S. candidate. Her research interests include cloud computing and big data processing.Supported by:
摘要:
细粒度实体分类是在给定实体指称后要求为其分配细粒度类型标签的任务。大多数细粒度实体分类采用远程监督的方法,为实体指称分配知识库中实体所对应的全部类型标签,这会引入无关或具体的噪声标签。在远程监督中,将分配与指称上下文无关的类型标签归为无关噪声标签,分配细粒度标签导致在上下文中实体含义不准确的类型标签归为具体噪声标签。为减轻噪声影响,以往采用人工标注、启发式规则剪枝等方法,但存在效率低、缩减训练集规模导致分类模型整体性能变差等问题。通过引入记忆网络,分类模型能深入学习实体指称上下文与类型标签之间的关联性,增强对相似的指称上下文所对应类型标签的记忆表示,有效减轻无关噪声标签的影响。与此同时,利用变形的层次损失函数有效学习类型标签之间的层次关系,从而缓解具体噪声标签的负面影响。此外,结合L2正则化函数防止训练模型对噪声标签的过拟合。在公开数据集上的实验结果表明,提出的方法能够有效缓解无关噪声标签和具体噪声标签对分类模型的消极影响,在准确率、Macro F1值、Micro F1值上表现均优于以往处理标签噪声的方法。
中图分类号:
周祺, 陶皖, 孔超, 崔佰婷. 融合记忆网络的细粒度实体分类方法[J]. 计算机科学与探索, 2022, 16(11): 2565-2574.
ZHOU Qi, TAO Wan, KONG Chao, CUI Baiting. Fine-Grained Entity Classification Method Fused with Memory Network[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(11): 2565-2574.
统计指标 | FIGER | BBN |
---|---|---|
类型数 | 113 | 47 |
最深层次 | 2 | 2 |
mentions-训练 | 2 009 898 | 86 078 |
mentions-测试 | 563 | 12 845 |
干净mentions-训练/% | 64.46 | 75.92 |
干净mentions-测试/% | 88.28 | 100.00 |
表1 数据集中的统计数据
Table 1 Statistics in datasets
统计指标 | FIGER | BBN |
---|---|---|
类型数 | 113 | 47 |
最深层次 | 2 | 2 |
mentions-训练 | 2 009 898 | 86 078 |
mentions-测试 | 563 | 12 845 |
干净mentions-训练/% | 64.46 | 75.92 |
干净mentions-测试/% | 88.28 | 100.00 |
超参数 | FIGER | BBN |
---|---|---|
256 | 256 | |
0.002 | 0.007 | |
250 | 250 | |
500 | 500 | |
500 | 500 | |
1 | 1 | |
0.4 | 0.4 | |
0.000 1 | 0.000 2 |
表2 超参数设置
Table 2 Hyperparameter setting
超参数 | FIGER | BBN |
---|---|---|
256 | 256 | |
0.002 | 0.007 | |
250 | 250 | |
500 | 500 | |
500 | 500 | |
1 | 1 | |
0.4 | 0.4 | |
0.000 1 | 0.000 2 |
[1] | 冯建周, 马祥聪. 基于迁移学习的细粒度实体分类方法的研究[J]. 自动化学报, 2020, 46(8): 1759-1766. |
FENG J Z, MA X C. Research on fine-grained entity classi-fication method based on transfer learning[J]. Acta Auto-matica Sinica, 2020, 46(8): 1759-1766. | |
[2] | LEE C, HWANG Y G, OH H J, et al. Fine-grained named entity recognition using conditional random fields for ques-tion answering[C]// LNCS 4182: Proceedings of the 3rd Asia Information Retrieval Symposium Information Retri-eval Technology, Singapore, Oct 16-18, 2006. Berlin, Heid-elberg: Springer, 2006: 581-587. |
[3] | SEKINE S. Extended named entity ontology with attribute information[C]// Proceedings of the 2008 International Con-ference on Language Resources and Evaluation, Marrak-ech, May 26-Jun 1, 2008: 1-6. |
[4] | LING X, WELD D S. Fine-grained entity recognition[C]// Proceedings of the 26th AAAI Conference on Artificial Intelligence, Toronto, Jul 22-26, 2012. Menlo Park: AAAI, 2012: 94-100. |
[5] | MINTZ M, BILLS S, SNOW R, et al. Distant supervision for relation extraction without labeled data[C]// Proceedings of the 47th Annual Meeting of the Association for Comput-ational Linguistics and the 4th International Joint Confer-ence on Natural Language Processing of the AFNLP, Sing-apore, Aug 2-7, 2009. Stroudsburg: ACL, 2009: 1003-1011. |
[6] | YOSEF M A, BAUER S, HOFFART J, et al. HYENA: hie-rarchical type classification for entity names[C]// Proceed-ings of the 24th International Conference on Computat-ional Linguistics, Mumbai, Dec 8-15, 2012. India: Indian Institute of Technology Bombay, 2012: 1361-1370. |
[7] | YOGATAMA D, GILLICK D, LAZIC N. Embedding meth-ods for fine grained entity type classification[C]// Proceed-ings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, Jul 26-31, 2015. Stroudsburg: ACL, 2015: 291-296. |
[8] | DONG X, GABRILOVICH E, HEITZ G, et al. Knowledge vault: a web-scale approach to probabilistic knowledge fusi-on[C]// Proceedings of the 20th ACM SIGKDD Internat-ional Conference on Knowledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 601-610. |
[9] | DEL CORRO L, ABUJABAL A, GEMULLA R, et al. FINET: context-aware fine-grained named entity typing[C]// Proce-edings of the 2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Sep 17-21, 2015. Str-oudsburg: ACL, 2015: 868-878. |
[10] | SHIMAOKA S, STENETORP P, INUI K, et al. An atten-tive neural architecture for fine-grained entity type classi-fication[C]// Proceedings of the 5th Workshop on Auto-mated Knowledge Base Construction, San Diego, Jun 17, 2016. Stroudsburg: ACL, 2016: 69-74. |
[11] |
马建红, 张炳斐, 张少光, 等. 基于主动MCNN-SCRF的新能源汽车命名实体识别[J]. 计算机工程与应用, 2019, 55(7): 23-29.
DOI |
MA J H, ZHANG B F, ZHANG S G, et al. New energy vehicle named entity recognition based on active MCNN-SCRF[J]. Computer Engineering and Applications, 2019, 55(7): 23-29. | |
[12] | 盛剑, 向政鹏, 秦兵, 等. 多场景文本的细粒度命名实体识别[J]. 中文信息学报, 2019, 33(6): 80-87. |
SHENG J, XIANG Z P, QIN B, et al. Fine-grained named entity recognition for multi-scene text[J]. Journal of Chinese Information Processing, 2019, 33(6): 80-87. | |
[13] |
王红, 林海舟, 卢林燕. 基于Att_GCN模型的知识图谱推理算法[J]. 计算机工程与应用, 2020, 56(9): 183-189.
DOI |
WANG H, LIN H Z, LU L Y. Knowledge graph inference algorithm based on Att_GCN model[J]. Computer Engine-ering and Applications, 2020, 56(9): 183-189. | |
[14] | 胡新棒, 于溆乔, 李邵梅, 等. 基于知识增强的中文命名实体识别[J]. 计算机工程, 2021, 47(11): 84-92. |
HU X B, YU G Q, LI S M, et al. Chinese named entity recognition based on knowledge enhancement[J]. Computer Engineering, 2021, 47(11): 84-92. | |
[15] | 西尔艾力·色提, 艾山·吾买尔, 王路路, 等. 结合单词-字符引导注意力网络的中文旅游文本命名实体识别[J]. 计算机工程, 2021, 47(2): 39-45. |
XIERAILI S, AISHAN W, WANG L L, et al. Named entity recognition in Chinese tourism text based on wordcharacter guided attention network[J]. Computer Engineering, 2021, 47(2): 39-45. | |
[16] | LAWRENCE N D, SCHÖLKOPF B. Estimating a kernel Fisher discriminant in the presence of label noise[C]// Proceedings of the 18th International Conference on Mach-ine Learning, Williamstown, Jun 28-Jul 1, 2001. San Franci-sco: Morgan Kaufmann, 2001: 306-313. |
[17] | GILLICK D, LAZIC N, GANCHEV K, et al. Context-dependent fine-grained entity type tagging[J]. arXiv:1412.1820, 2014. |
[18] | REN X, HE W, QU M, et al. AFET: automatic fine-grained entity typing by hierarchical partial-label embedding[C]// Pro-ceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Nov 1-4, 2016. Strou-dsburg: ACL, 2016: 1369-1378. |
[19] | ABHISHEK A, ANAND A, AWEKAR A. Fine-grained entity type classification by jointly learning representations and label embeddings[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Comput-ational Linguistics, Valencia, Apr 3-7, 2017. Stroudsburg: ACL, 2017: 797-807. |
[20] | XU P, BARBOSA D. Neural fine-grained entity type classi-fication with hierarchy-aware loss[C]// Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Langu-age Technologies, New Orleans, Jun 1-6, 2018. Stroudsburg: ACL, 2018: 16-25. |
[21] | CHEN B, GU X, HU Y, et al. Improving distantly-supervised entity typing with compact latent space clustering[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Minneapolis, Jun 2-7, 2019. Stroudsburg: ACL, 2019: 2862-2872. |
[22] | XIN J, ZHU H, HAN X, et al. Put it back: entity typing with language model enhancement[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Langu-age Processing, Brussels, Oct 31-Nov 4, 2018. Strouds-burg: ACL, 2018: 993-998. |
[23] | ZHANG H, LONG D, XU G, et al. Learning with noise: improving distantly-supervised fine-grained entity typing via automatic relabeling[C]// Proceedings of the 29th Internati-onal Joint Conference on Artificial Intelligence, Yokohama, Jul 2020: 3808-3815. |
[24] | XIA S, WANG G, CHEN Z, et al. Complete random forest based class noise filtering learning for improving the gene-ralizability of classifiers[J]. IEEE Computer Architecture Letters, 2019, 31(11): 2063-2078. |
[25] |
ZHANG W, WANG D, TAN X. Robust class-specific auto-encoder for data cleaning and classification in the presence of label noise[J]. Neural Processing Letters, 2019, 50(2): 1845-1860.
DOI URL |
[26] | WEI Y, GONG C, CHEN S, et al. Harnessing side inform-ation for classification under label noise[J]. IEEE Transa-ctions on Neural networks and Learning Systems, 2019, 31(9): 3178-3192. |
[27] | ZHOU B, KHASHABI D, TSAI C T, et al. Zero-shot open entity typing as type-compatible grounding[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Oct 31-Nov 4, 2018. Strouds-burg: ACL, 2018: 2065-2076. |
[28] | DAI H, DU D, LI X, et al. Improving fine-grained entity typing with entity linking[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing, Hong Kong, China, Nov 3-7, 2019. Stroudsburg: ACL, 2019: 6209-6214. |
[29] | PAN X, CASSIDY T, HERMJAKOB U, et al. Unsuper-vised entity linking with abstract meaning representation[C]// Proceedings of the 2015 Conference of the North Ame-rican Chapter of the Association for Computational Lingu-istics:Human Language Technologies, Denver, May 31-Jun 5, 2015. Stroudsburg: ACL, 2015: 1130-1139. |
[30] | ZHOU P, SHI W, TIAN J, et al. Attention-based bidire-ctional long short-term memory networks for relation classi-fication[C]// Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics, Berlin, Aug 7-12, 2016. Stroudsburg: ACL, 2016: 207-212. |
[31] | WEISCHEDEL R, BRUNSTEIN A. BBN pronoun corefer-ence and entity type corpus[EB/OL]. [2021-01-06]. https://doi.org/10.35111/9fx9-gz10. |
[32] | PENNINGTON J, SOCHER R, MANNING C D. GloVe: global vectors for word representation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Lan-guage Processing, Doha, Oct 25-29, 2014. Stroudsburg: ACL, 2014: 1532-1543. |
[1] | 唐晨, 赵杰煜, 叶绪伦, 郑阳, 俞书世. 动态图的链接预测模型[J]. 计算机科学与探索, 2022, 16(10): 2365-2376. |
[2] | 李兴秀, 唐建军, 华晶. 结合CNN与双向LSTM的心律失常分类[J]. 计算机科学与探索, 2021, 15(12): 2353-2361. |
[3] | 程琪芩,万良. BiLSTM在跨站脚本检测中的应用研究[J]. 计算机科学与探索, 2020, 14(8): 1338-1347. |
[4] | 韩鑫鑫,贲可荣,张献. 军用软件测试领域的命名实体识别技术研究[J]. 计算机科学与探索, 2020, 14(5): 740-748. |
[5] | 张周彬,相艳,梁俊葛,杨嘉林,马磊. 利用位置增强注意力机制的属性级情感分类[J]. 计算机科学与探索, 2020, 14(4): 619-627. |
[6] | 刘辰,肖志勇,杜年茂. 改进的卷积神经网络在医学图像分割上的应用[J]. 计算机科学与探索, 2019, 13(9): 1593-1603. |
[7] | 李冬梅,檀稳. 植物属性文本的命名实体识别方法研究[J]. 计算机科学与探索, 2019, 13(12): 2085-2093. |
[8] | 高雅,江国华,秦小麟,王钟毓. 基于LSTM的移动对象位置预测算法[J]. 计算机科学与探索, 2019, 13(1): 23-34. |
[9] | 王凯,洪宇,邱盈盈,姚建民,周国栋. 融合上下文依赖和句子语义的事件线索检测研究[J]. 计算机科学与探索, 2018, 12(3): 423-431. |
阅读次数 | ||||||||||||||||||||||||||||||||||||||||||||||||||
全文 187
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
摘要 260
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||