计算机科学与探索 ›› 2020, Vol. 14 ›› Issue (4): 619-627.DOI: 10.3778/j.issn.1673-9418.1904049
张周彬,相艳,梁俊葛,杨嘉林,马磊
ZHANG Zhoubin, XIANG Yan, LIANG Junge, YANG Jialin, MA Lei
摘要:
属性级情感分类旨在准确识别评论中属性的情感极性。现有的基于长短时记忆网络(LSTM)的方法大多只利用了属性和上下文的语义信息,而忽视了属性与上下文相对位置信息。针对此问题,提出一种利用相对位置信息来增强注意力的LSTM网络模型,解决属性级情感分类问题。首先,对上下文的输入层加入位置向量,利用两个LSTM网络对上下文和属性分别进行独立语义编码;然后,对上下文的隐藏层再次拼接位置向量,并利用属性隐藏层向量参与上下文不同词注意力权重的计算;最后,利用上下文生成的有效表示进行情感分类。该模型在SemEval 2014 Task4 Restaurant和Laptop两个不同领域数据集上进行了实验,在三分类实验中,准确率分别达到79.7%和72.1%。在二分类实验中,准确率分别达到92.1%和88.3%。相比多个基线模型,在准确率上都有一定的提升。