[1] HAMILTON W L, YING Z T, LESKOVEC J. Inductive re-presentation learning on large graphs[C]//Advances in Neu-ral Information Processing Systems 30, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 1024-1035.
[2] VELI V C, KOVI C P, CUCURULL G, et al. Graph attention networks[J]. arXiv:1710.10903, 2017.
[3] LUCK K, KIM D, LAMBOURNE L, et al. A reference map of the human binary protein interactome[J]. Nature, 2020, 580(7803): 402-408.
[4] SUN T, ZHOU B, LAI L, et al. Sequence-based prediction of protein protein interaction using a deep-learning algori-thm[J]. BMC Bioinformatics, 2017, 18(1): 1-8.
[5] YOU Z, CHAN K C, HU P. Predicting protein-protein inte-ractions from primary protein sequences using a novel multi-scale local feature representation scheme and the random forest[J]. PLoS One, 2015, 10(5): e125811.
[6] YOU Z, LI X, CHAN K C. An improved sequence-based pre-diction protocol for protein-protein interactions using amino acids substitution matrix and rotation forest ensemble clas-sifiers[J]. Neurocomputing, 2017, 228: 277-282.
[7] YOU Z, YU J, ZHU L, et al. A MapReduce based parallel SVM for large-scale predicting protein-protein interactions[J]. Neurocomputing, 2014, 145: 37-43.
[8] YUE X, WANG Z, HUANG J, et al. Graph embedding on biomedical networks: methods, applications and evaluations[J]. Bioinformatics, 2020, 36(4): 1241-1251.
[9] KULMANOV M, KHAN M A, HOEHNDORF R. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier[J]. Bioinformatics,2018, 34(4): 660-668.
[10] YAO H, GUAN J, LIU T. Denoising protein-protein interac-tion network via variational graph auto-encoder for protein complex detection[J]. Journal of Bioinformatics and Compu-tational Biology, 2020, 18(3): 2040010.
[11] ZHU L, YOU Z, HUANG D. Increasing the reliability of protein-protein interaction networks via non-convex semantic embe-dding[J]. Neurocomputing, 2013, 121: 99-107.
[12] GROVER A, LESKOVEC J. node2vec: scalable feature lear-ning for networks[C]//Proceedings of the 22nd ACM SIG-KDD International Conference on Knowledge Discovery and Data Mining, San Francisco, Aug 13-17, 2016. New York: ACM, 2016: 855-864.
[13] LEI C, RUAN J. A novel link prediction algorithm for re-constructing protein-protein interaction networks by topo-logical similarity[J]. Bioinformatics, 2013, 29(3): 355-364.
[14] KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv:1609.02907, 2016.
[15] NICKEL M, KIELA D. Poincaré embeddings for learning hierarchical representations[C]//Advances in Neural Infor-mation Processing Systems 30, Long Beach, Dec 4-9, 2017. Red Hook: Curran Associates, 2017: 6338-6347.
[16] 王强, 江昊, 羿舒文, 等. 复杂网络的双曲空间表征学习方法[J]. 软件学报, 2021, 32(1): 93-117.
WANG Q, JIANG H, YI S W, et al. Hyperbolic representa-tion learning for complex networks[J]. Journal of Software, 2021, 32(1): 93-117.
[17] NICKEL M, KIELA D. Learning continuous hierarchies in the Lorentz model of hyperbolic geometry[C]//Proceedings of the 35th International Conference on Machine Learning, Stockholmsm?ssan, Jul 10-15, 2018: 3776-3785.
[18] CHAMI I, YING R, Ré C, et al. Hyperbolic graph convo-lutional neural networks[C]//Advances in Neural Informa-tion Processing Systems 32, Vancouver, Dec 8-14, 2019: 4869-4880.
[19] KIPF T N, WELLING M. Variational graph auto-encoders[J]. arXiv:1611.07308, 2016.
[20] CHO H, BERGER B, PENG J. Compact integration of multi-network topology for functional analysis of genes[J]. Cell Systems, 2016, 3(6): 540-548.
[21] GLIGORIJEVI C V, BAROT M, BONNEAU R. deepNF: deep network fusion for protein function prediction[J]. Bioinfor-matics, 2018, 34(22): 3873-3881.
[22] HU W, LIU B, GOMES J, et al. Strategies for pre-training graph neural networks[J]. arXiv:1905.12265, 2019.
[23] IOANNIDIS V N, MARQUES A G, GIANNAKIS G B. Graph neural networks for predicting protein functions[C]//Proceedings of the 8th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Proces-sing, Le Gosier, Dec 15-18, 2019. Piscataway: IEEE, 2019: 221-225.
[24] LIU Q, NICKEL M, KIELA D. Hyperbolic graph neural net-works[C]//Advances in Neural Information Processing Sys-tems 32, Vancouver, Dec 8-14, 2019: 8230-8241.
[25] KRIOUKOV D, PAPADOPOULOS F, KITSAK M, et al. Hyperbolic geometry of complex networks[J]. Physical Re-view E, 2010, 82(3): 36106.
[26] PAPADOPOULOS F, KITSAK M, SERRANO M A N, et al. Popularity versus similarity in growing networks[J]. Na-ture, 2012, 489(7417): 537-540.
[27] TIFREA A, CIGNEUL G, GANEA O. Poincare GloVe: hyperbolic word embeddings[J]. arXiv:1810.06546, 2018.
[28] GULCEHRE C, DENIL M, MALINOWSKI M, et al. Hy-perbolic attention networks[J]. arXiv:1805.09786, 2018.
[29] PEROZZI B, AL-RFOU R, SKIENA S. DeepWalk: online learning of social representations[C]//Proceedings of the 20th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining, New York, Aug 24-27, 2014. New York: ACM, 2014: 701-710.
[30] RIBEIRO L F R, SAVERESE P H P, FIGUEIREDO D R. Struc2vec: learning node representations from structural iden-tity[C]//Proceedings of the 23rd ACM SIGKDD Internatio-nal Conference on Knowledge Discovery and Data Mining, Halifax, Aug 13-17, 2017. New York: ACM, 2017: 385-394.
[31] GROMOV M. Hyperbolic groups[M]//GERSTEN S M.Essays in Group Theory. Berlin, Heidelberg: Springer, 1987. |