[1] ADJABI I, OUAHABI A, BENZAOUI A, et al. Past, present, and future of face recognition: a review[J]. Electronics, 2020, 9(8): 1188.
[2] DU H, SHI H, ZENG D, et al. The elements of end-to-end deep face recognition: a survey of recent advances[J]. ACM Computing Surveys, 2022, 54: 1-42.
[3] WANG M, DENG W. Deep face recognition: a survey[J]. Neurocomputing, 2021, 429: 215-244.
[4] LIU W, WEN Y, YU Z, et al. SphereFace: deep hypersphere embedding for face recognition[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 212-220.
[5] WANG H, WANG Y, ZHOU Z, et al. CosFace: large margin cosine loss for deep face recognition[C]//Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-22, 2018. Washington:IEEE Computer Society, 2018: 5265-5274.
[6] DENG J, GUO J, XUE N, et al. ArcFace: additive angular margin loss for deep face recognition[C]//Proceedings of the 2019 IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 4690-4699.
[7] LI X, WANG F, HU Q, et al. AirFace: lightweight and efficient model for face recognition[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 3, 2019. Piscataway: IEEE, 2019: 2678-2682.
[8] ZHANG X, ZHAO R, QIAO Y, et al. AdaCos: adaptively scaling cosine logits for effectively learning deep face representations[C]//Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, Jun 16-20, 2019. Piscataway: IEEE, 2019: 10823-10832.
[9] CHEN B, LIU W, YU Z, et al. Angular visual hardness[C]//Proceedings of the 2020 International Conference on Machine Learning, Jul 13-18, 2020: 1637-1648.
[10] HUANG Y, SHEN P, TAI Y, et al. Improving face recognition from hard samples via distribution distillation loss[C]//Proceedings of the 16th European Conference on Computer Vision, Glasgow, Aug 23-28, 2020. Cham: Springer, 2020: 138-154.
[11] WANG X, ZHANG S, WANG S, et al. Mis-classified vector guided softmax loss for face recognition[C]//Proceedings of the 2020 AAAI Conference on Artificial Intelligence, New York, Feb 7-12, 2020. Menlo Park: AAAI, 2020: 12241-12248.
[12] HUANG Y, WANG Y, TAI Y, et al. CurricularFace: adaptive curriculum learning loss for deep face recognition[C]//Proceedings of the 2020 IEEE Conference on Computer Vision and Pattern Recognition, Washington, Jun 14-19, 2020. Wash-ington: IEEE Computer Society, 2020: 5901-5910.
[13] KIM M, JAIN A K, LIU X. AdaFace: quality adaptive margin for face recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 18750-18759.
[14] MENG Q, ZHAO S, HUANG Z, et al. MagFace: a universal representation for face recognition and quality assessment[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021.Piscataway: IEEE, 2021: 14220-14229.
[15] WANG K, WANG S, ZHANG P, et al. An efficient training approach for very large scale face recognition[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 4083-4092.
[16] AN X, DENG J, GUO J, et al. Killing two birds with one stone: efficient and robust training of face recognition CNNs by partial FC[C]//Proceedings of the 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, Jun 21-24, 2022. Piscataway: IEEE, 2022: 4042-4051.
[17] AN X, ZHU X, GAO Y, et al. Partial FC: training 10 million identities on a single machine[C]//Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision, Oct 11-17, 2021. Piscataway: IEEE, 2021: 1445-1449.
[18] SHI Y, JAIN A K. Probabilistic face embeddings[C]//Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Oct 27-Nov 3, 2019. Piscataway: IEEE, 2019: 6902-6911.
[19] CHANG J, LAN Z, CHENG C, et al. Data uncertainty learn-ing in face recognition[C]//Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Washington, Jun 14-19, 2020. Piscataway: IEEE, 2020: 5710-5719.
[20] LI S, XU J, XU X, et al. Spherical confidence learning for face recognition[C]//Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Jun 19-25, 2021. Piscataway: IEEE, 2021: 15629-15637.
[21] ZHANG K, ZHANG Z, LI Z, et al. Joint face detection and alignment using multitask cascaded convolutional networks[J]. IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[22] WHITELAM C, TABORSKY E, BLANTON A, et al. IARPA Janus benchmark-B face dataset[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Feb 25-26, 2017. Washington: IEEE Computer Society, 2017: 90-98.
[23] MAZE B, ADAMS J, DUNCAN J A, et al. IARPA Janus benchmark-C: face dataset and protocol[C]//Proceedings of the 2018 International Conference on Biometrics, Gold Coast, Feb 20-23, 2018. Piscataway: IEEE, 2018: 158-165.
[24] CHENG Z, ZHU X, GONG S. Low-resolution face recognition[C]//Proceedings of the 14th Asian Conference on Computer Vision, Perth, Dec 2-6, 2018. Cham: Springer, 2019: 605-621.
[25] 王海勇, 潘海涛, 刘贵楠. 融合注意力机制和课程式学习的人脸识别方法[J]. 计算机科学与探索, 2023, 17(8): 1893-1903.
WANG H Y, PAN H T, LIU G N. Face recognition method based on attention mechanism and curriculum learning[J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(8): 1893-1903. |