[1] 陈磊, 吴润秀, 李沛武, 等. 加权K近邻和多簇合并的密度峰值聚类算法[J]. 计算机科学与探索, 2022, 16(9): 2163-2176.
CHEN L, WU R X, LI P W, et al. Weighted K-nearest neighbors and multi-cluster merge density peaks clustering algorithm[J]. Journal of Frontiers of Computer Science and Technology, 2022, 16(9): 2163-2176.
[2] 刘娟, 万静. 自然反向最近邻优化的密度峰值聚类算法[J]. 计算机科学与探索, 2021, 15(10): 1888-1899.
LIU J, WAN J. Optimized density peak clustering algorithm by natural reverse nearest neighbor[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1888-1899.
[3] JAIN A K. Data clustering: 50 years beyond K-means[J]. Pattern Recognition Letters, 2010, 31(8): 651-666.
[4] GUHA S, RASTOGI R, SHIM K. Cure: an efficient clustering algorithm for large databases[J]. Information Systems, 2001, 26(1): 35-58.
[5] ZHANG T, RAMAKRISHNAN R, LIVNY M. BIRCH: an efficient data clustering method for very large databases[C]//Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1996: 103-114.
[6] SHEIKHOLESLAMI G, CHATTERJEE S, ZHANG A D. WaveCluster: a wavelet-based clustering approach for spatial data in very large databases[J]. The VLDB Journal, 2000, 8(3): 289-304.
[7] WANG W, YANG J, MUNTZ R R. STING: a statistical information grid approach to spatial data mining[C]//Proceedings of the 23rd Very Large Data Bases Conference, 1997: 186-195.
[8] ESTER M, KRIEGEL H P, SANDER J, et al. A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining. New York: ACM, 1996: 226-231.
[9] RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344(6191): 1492-1496.
[10] 谢娟英, 张文杰. 局部标准差优化的密度峰值聚类算法[J]. 陕西师范大学学报(自然科学版), 2024, 52(3): 47-62.
XIE J Y, ZHANG W J. Density peak clustering algorithm optimized with local standard deviation[J]. Journal of Shaanxi Normal University (Natural Science Edition), 2024, 52(3): 47-62.
[11] ZELNIK-MANOR L, PERONA P, ZELNIK-MANOR L, et al. Self-tuning spectral clustering[C]//Proceedings of the 18th International Conference on Neural Information Processing Systems, 2004: 1601-1608.
[12] 谢娟英, 高红超, 谢维信. K近邻优化的密度峰值快速搜索聚类算法[J]. 中国科学: 信息科学, 2016, 46(2): 258-280.
XIE J Y, GAO H C, XIE W X. K-nearest neighbors optimized clustering algorithm by fast search and finding the density peaks of a dataset[J]. Scientia Sinica Informationis, 2016, 46(2): 258-280.
[13] XIE J Y, GAO H C, XIE W X, et al. Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors[J]. Information Sciences, 2016, 354: 19-40.
[14] BIAN Z K, CHUNG F L, WANG S T. Fuzzy density peaks clustering[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(7): 1725-1738.
[15] REN C H, SUN L F, YU Y, et al. Effective density peaks clustering algorithm based on the layered K-nearest neighbors and subcluster merging[J]. IEEE Access, 2020, 8: 123449-123468.
[16] XIE J Y, LIU X L, WANG M Z, et al. SDW-DPC: an advanced clustering algorithm by searching density peaks using standard deviation weighted distance[C]//Proceedings of the 2022 IEEE 8th International Conference on Cloud Computing and Intelligent Systems. Piscataway: IEEE, 2022: 131-137.
[17] WANG S L, LI Q, ZHAO C F, et al. Extreme clustering-a clustering method via density extreme points[J]. Information Sciences, 2021, 542: 24-39.
[18] LIU R, WANG H, YU X M. Shared-nearest-neighbor-based clustering by fast search and find of density peaks[J]. Information Sciences, 2018, 450: 200-226.
[19] CHEN J G, YU P S. A domain adaptive density clustering algorithm for data with varying density distribution[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(6): 2310-2321.
[20] SUN L, QIN X Y, DING W P, et al. Density peaks clustering based on k-nearest neighbors and self-recommendation[J]. International Journal of Machine Learning and Cybernetics, 2021, 12(7): 1913-1938.
[21] ZHANG Q H, DAI Y Y, WANG G Y. Density peaks clustering based on balance density and connectivity[J]. Pattern Recognition, 2023, 134: 109052.
[22] SEYEDI S A, LOTFI A, MORADI P, et al. Dynamic graph-based label propagation for density peaks clustering[J]. Expert Systems with Applications, 2019, 115: 314-328.
[23] GUO W J, WANG W H, ZHAO S P, et al. Density peak clustering with connectivity estimation[J]. Knowledge-Based Systems, 2022, 243: 108501.
[24] KELLY M, LONGJOHN R, NOTTINGHAN K. The UCI machine learning repository[EB/OL]. [2024-02-16]. https://archive.ics.uci.edu.
[25] VINH N X, EPPS J, BAILEY J. Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance[J]. Journal of Machine Learning Research, 2010, 11: 2837-2854.
[26] CHANG H, YEUNG D Y. Robust path-based spectral clustering[J]. Pattern Recognition, 2008, 41(1): 191-203.
[27] VEENMAN C J, REINDERS M J T, BACKER E. A maximum variance cluster algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(9): 1273-1280.
[28] XIE J Y, JIANG W L. An adaptive clustering algorithm by finding density peaks[C]//Proceedings of the 15th Pacific Rim International Conference on Artificial Intelligence. Cham: Springer, 2018: 317-325.
[29] HANDL J, KNOWLES J. Multi-objective clustering and cluster validation[M]//Multi-objective machine learning. Berlin, Heidelberg: Springer, 2006: 21-47. |