
计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (8): 2001-2023.DOI: 10.3778/j.issn.1673-9418.2411033
孟祥福,翁雪,徐永杰
出版日期:2025-08-01
发布日期:2025-07-31
MENG Xiangfu, WENG Xue, XU Yongjie
Online:2025-08-01
Published:2025-07-31
摘要: 随着现代信息技术的快速发展与应用,时空数据的规模迅速增长。这些数据呈现出海量聚集、高维异构以及动态复杂等特点。近年来,以时空数据为背景的时空查询技术得到广泛的研究和应用,如何有效地存储、管理和查询这些数据成为了研究的重点。对时空数据的相关查询技术进行综述,从时空数据相关基本概念入手,系统阐述了当前主流的时空查询处理模式,涵盖了范围查询、K近邻查询、反K近邻查询等多种类型;介绍了不同的时空索引技术,包括基于轨迹的索引结构、基于抽样的索引以及其他创新的索引方法;分析了结合其他技术的查询方法,主要包括时空-文本查询、语义近似轨迹查询、并行和分布式查询等,这些技术不仅提升了时空查询的多样性和准确性,还能有效地处理大规模时空数据。展望了时空查询技术的未来发展方向,包括查询结果的可视化展示、隐私保护以及结合机器学习的新型索引结构,为时空数据的高效利用提供了新的思路和挑战。
孟祥福, 翁雪, 徐永杰. 时空数据查询技术研究综述[J]. 计算机科学与探索, 2025, 19(8): 2001-2023.
MENG Xiangfu, WENG Xue, XU Yongjie. Review of Research on Spatio-Temporal Data Query Technologies[J]. Journal of Frontiers of Computer Science and Technology, 2025, 19(8): 2001-2023.
| [1] MAHMOOD A R, PUNNI S, AREF W G. Spatio-temporal access methods: a survey (2010-2017)[J]. GeoInformatica,2019, 23(1): 1-36. [2] KIM D, CáNOVAS-SEGURA B, CAMPOS M, et al. Visualization of spatial-temporal epidemiological data: a scoping review[J]. Technologies, 2024, 12(3): 31. [3] YANG Y Y, JIN M, WEN H M, et al. A survey on diffusion models for time series and spatio-temporal data[EB/OL]. [2024-09-23]. https://arxiv.org/abs/2404.18886. [4] COMER D. Ubiquitous B-tree[J]. ACM Computing Surveys,1979, 11(2): 121-137. [5] GUTTMAN A. R-trees: a dynamic index structure for spatial searching[C]//Proceedings of the 1984 ACM SIGMOD International Conference on Management of Data. New York: ACM, 1984: 47-57. [6] LOMET D, SALZBERG B. Access methods for multiversion data[J]. ACM SIGMOD Record, 1989, 18(2): 315-324. [7] ZHOU P F, ZHANG D H, SALZBERG B, et al. Close pair queries in moving object databases[C]//Proceedings of the 13th Annual ACM International Workshop on Geographic Information Systems. New York: ACM, 2005: 2-11. [8] THEODORIDIS Y, VAZIRGIANNIS M, SELLIS T. Spatio-temporal indexing for large multimedia applications[C]//Proceedings of the 3rd IEEE International Conference on Multimedia Computing and Systems. Piscataway: IEEE, 2002: 441-448. [9] ?ALTENIS S, JENSEN C S, LEUTENEGGER S T, et al. Indexing the positions of continuously moving objects[C]//Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2000: 331-342. [10] DITTRICH J, BLUNSCHI L, VAZ SALLES M A. Indexing moving objects using short-lived throwaway indexes[C]//Advances in Spatial and Temporal Databases. Berlin, Heidelberg: Springer, 2009: 189-207. [11] TROPF H, HERZOG H. Multidimensional range search in dynamically balanced trees[J]. Angewandte Informatik,1981(2): 71-77. [12] ORENSTEIN J A, MERRETT T H. A class of data structures for associative searching[C]//Proceedings of the 3rd ACM SIGACT-SIGMOD Symposium on Principles of Database Systems. New York: ACM, 1984: 181. [13] TAYEB J,ULUSOY ?,WOLFSON O. A quadtree-based dynamic attribute indexing method[J]. The Computer Journal,1998, 41(3): 185-200. [14] CUDRE-MAUROUX P, WU E, MADDEN S. TrajStore: an adaptive storage system for very large trajectory data sets[C]//Proceedings of the 2010 IEEE 26th International Conference on Data Engineering. Piscataway: IEEE, 2010: 109-120. [15] SAMET H. Applications of spatial data structures: computer graphics, image processing, and GIS[M]. Boston: Addison-Wesley Longman Publishing Co., Inc., 1990. [16] PATEL J M, CHEN Y, CHAKKA V P. STRIPES: an efficient index for predicted trajectories[C]//Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2004: 635-646. [17] KWON D, LEE S J, LEE S. Indexing the current positions of moving objects using the lazy update R-tree[C]//Proceedings of the 3rd International Conference on Mobile Data Management. Piscataway: IEEE, 2002: 113-120. [18] CHAKKA V P, EVERSPAUGH A, PATEL J M. Indexing large trajectory data sets with SETI[C]//Proceedings of the 1st Biennial Conference on Innovative Data Systems Research, 2003: 76. [19] CRESSIE N, WIKLE C K. Statistics for spatio-temporal data[M]. Hoboken: John Wiley & Sons, 2011. [20] DITTRICH J, QUIANé-RUIZ J A. Efficient big data processing in hadoop MapReduce[J]. Proceedings of the VLDB Endowment, 2012, 5(12): 2014-2015. [21] AHARIA M, XIN R S, WENDELL P, et al. Apache Spark: a unified engine for big data processing[J]. Communications of the ACM, 2016, 59(11): 56-65. [22] GüTING R H, LU J. Parallel secondo: scalable query processing in the cloud for non-standard applications[J]. Sigspatial Special, 2015, 6(2): 3-10. [23] ALARABI L, MOKBEL M F. A demonstration of ST-hadoop: a MapReduce framework for big spatio-temporal data[J]. Proceedings of the VLDB Endowment, 2017, 10(12): 1961-1964. [24] ALARABI L. Summit: a scalable system for massive trajectory data management[C]//Proceedings of the 26th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2018: 612-613. [25] NIKITOPOULOS P, VLACHOU A, DOULKERIDIS C,et al. DiStRDF: distributed spatio-temporal RDF queries on spark[C]//Proceedings of the Workshops of the EDBT/ICDT 2018 Joint Conference, 2018: 125-132. [26] SHANG Z Y, LI G L, BAO Z F. DITA: distributed in-memory trajectory analytics[C]//Proceedings of the 2018 International Conference on Management of Data. New York: ACM, 2018: 725-740. [27] FANG Z Q, CHEN L, GAO Y J, et al. Dragoon: a hybrid and efficient big trajectory management system for offline and online analytics[J]. The VLDB Journal, 2021, 30(2): 287-310. [28] NISHIMURA S, DAS S, AGRAWAL D, et al. MD-HBase: a scalable multi-dimensional data infrastructure for location aware services[C]//Proceedings of the 2011 IEEE 12th International Conference on Mobile Data Management. Piscataway: IEEE, 2011: 7-16. [29] NIDZWETZKI J K, GüTING R H. Distributed SECONDO: a highly available and scalable system for spatial data processing[C]//Advances in Spatial and Temporal Databases. Cham: Springer, 2015: 491-496. [30] QIN J W, MA L L, NIU J H. THBase: a coprocessor-based scheme for big trajectory data management[J]. Future Internet,2019, 11(1): 10. [31] PFOSER D, JENSEN C S, THEODORIDIS Y. Novel approaches in query processing for moving object trajectories[C]//Proceedings of the 26th International Conference on Very Large Data Bases, 2000: 395-406. [32] NASCIMENTO M A, SILVA J R O. Towards historical R-trees[C]//Proceedings of the 1998 ACM symposium on Applied Computing. New York: ACM, 1998: 235-240. [33] JENSEN C, LIN D, OOI B. Query and update efficient B-tree based indexing of moving objects[C]//Proceedings of the 30th International Conference on Very Large Data Bases.San Francisco: Morgan Kaufmann, 2004: 768-779. [34] ELBASSIONI K, ELMASRY A, KAMEL I. An efficient indexing scheme for multi-dimensional moving objects[C]//Proceedings of the 9th International Conference on Database Theory. Berlin, Heidelberg: Springer, 2003: 425-439. [35] SAULYS D, JOHANSEN J M, CHRISTIANSEN C W. Indexing moving objects in main memory[C]//Proceedings of the 2008 Annual IEEE Student Paper Conference. Piscataway: IEEE, 2008: 1-5. [36] KALASHNIKOV D, PRABHAKAR S, HAMBRUSCH S,et al. Efficient evaluation of continuous range queries on moving objects[C]//Proceedings of the 2002 International Conference on Database and Expert Systems Applications. Berlin, Heidelberg: Springer, 2002: 731-740. [37] TAO Y F, PAPADIAS D. Time-parameterized queries in spatio-temporal databases[C]//Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2002: 334-345. [38] TAO Y F, PAPADIAS D, SHEN Q M. Continuous nearest neighbor search[C]//Proceedings of the 28th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2002: 287-298. [39] BENETIS R, JENSEN C S, KARCIAUSKAS G, et al. Nearest neighbor and reverse nearest neighbor queries for moving objects[C]//Proceedings of the 2002 International Database Engineering and Applications Symposium. Piscataway: IEEE, 2002: 44-53. [40] BENETIS R, JENSEN C S, KAR?IAUSKAS G, et al. Nearest and reverse nearest neighbor queries for moving objects[J]. The VLDB Journal, 2006, 15(3): 229-249. [41] LEE K C K, LEONG H V, ZHOU J, et al. An efficient algorithm for predictive continuous nearest neighbor query processing and result maintenance[C]//Proceedings of the 6th International Conference on Mobile Data Management. New York: ACM, 2005: 178-182. [42] RAPTOPOULOU K, PAPADOPOULOS A N, MANOLOPOULOS Y. Fast nearest-neighbor query processing in moving-object databases[J]. GeoInformatica, 2003, 7(2): 113-137. [43] IWERKS G S, SAMET H, SMITH K. Continuous K-nearest neighbor queries for continuously moving points with updates[C]//Proceedings of the 29th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2003: 512-523. [44] DONG T Y, YUAN L L, SHANG Y H, et al. Direction-aware continuous moving K-nearest-neighbor query in road networks[J]. ISPRS International Journal of Geo-Information, 2019, 8(9): 379. [45] SONG Z X, ROUSSOPOULOS N. K-nearest neighbor search for moving query point[C]//Advances in Spatial and Temporal Databases. Berlin, Heidelberg: Springer, 2001: 79-96. [46] MOKBEL M F, XIONG X P, AREF W G. SINA: scalable incremental processing of continuous queries in spatio-temporal databases[C]//Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data, 2004: 623-634. [47] XIONG X, MOKBEL M F, AREF W G. SEA-CNN: scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases[C]//Proceedings of the 21st International Conference on Data Engineering. Piscataway: IEEE, 2005: 643-654. [48] NEHME R V, RUNDENSTEINER E A. SCUBA: scalable cluster-based algorithm for evaluating continuous spatio-temporal queries on moving objects[C]//Proceedings of the 10th International Conference on Extending Database Technology. Berlin, Heidelberg: Springer, 2006: 1001-1019. [49] HUANG Y K, CHEN C C, LEE C A. Continuous K-nearest neighbor query for moving objects with uncertain velocity[J]. GeoInformatica, 2009, 13(1): 1-25. [50] HUANG Y K, LEE C A. Efficient evaluation of continuous spatio-temporal queries on moving objects with uncertain velocity[J]. GeoInformatica, 2010, 14(2): 163-200. [51] HSUEH Y L, ZIMMERMANN R, KU W S. Efficient location updates for continuous queries over moving objects[J]. Journal of Computer Science and Technology, 2010, 25(3): 415-430. [52] MOURATIDIS K, YIU M L, PAPADIAS D, et al. Continuous nearest neighbor monitoring in road networks[C]//Proceedings of the 32nd International Conference on Very Large Data Bases. New York: ACM, 2006: 43-54. [53] WANG H J, ZIMMERMANN R. Processing of continuous location-based range queries on moving objects in road networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 23(7): 1065-1078. [54] FAN P, LI G H, YUAN L, et al. Vague continuous K-nearest neighbor queries over moving objects with uncertain velocity in road networks[J]. Information Systems, 2012, 37(1): 13-32. [55] SUN H L, JIANG C, LIU J L, et al. Continuous reverse nearest neighbor queries on moving objects in road networks[C]//Proceedings of the 9th International Conference on Web-Age Information Management. Piscataway: IEEE, 2008: 238-245. [56] NELSON R C, SAMET H. A consistent hierarchical representation for vector data[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM, 1986: 197-206. [57] XU C F, GU Y, CHEN L, et al. Interval reverse nearest neighbor queries on uncertain data with Markov correlations[C]//Proceedings of the 2013 IEEE 29th International Conference on Data Engineering. Piscataway: IEEE, 2013: 170-181. [58] EMRICH T, KRIEGEL H P, MAMOULIS N, et al. Reverse-nearest neighbor queries on uncertain moving object trajectories[C]//Proceedings of the 19th International Conference on Database Systems for Advanced Applications. Cham: Springer, 2014: 92-107. [59] SUN J, PAPADIAS D, TAO Y F, et al. Querying about the past, the present, and the future in spatio-temporal databases[C]//Proceedings of the 20th International Conference on Data Engineering. Piscataway: IEEE, 2004: 202-213. [60] SHEN Z. Efficient processing of Top-k queries on spatial and temporal data[D]. Sydney: University of New South Wales, 2012. [61] CHEN S, OOI B C, TAN K L, et al. ST2B-tree: a self-tunable spatio-temporal B+-tree index for moving objects[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2008: 29-42. [62] YIU M L, TAO Y F, MAMOULIS N. The Bdual-Tree: indexing moving objects by space filling curves in the dual space[J]. The VLDB Journal, 2008, 17(3): 379-400. [63] BECKMANN N, KRIEGEL H P, SCHNEIDER R, et al. The R*-tree: an efficient and robust access method for points and rectangles[J]. ACM SIGMOD Record, 1990, 19(2): 322-331. [64] TAO Y F, PAPADIAS D, SUN J M. The TPR*-tree an optimized spatio-temporal access method for predictive queries[C]//Proceedings of 29th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2003: 790-801. [65] SALTENIS S, JENSEN C S. Indexing of moving objects for location-based services[C]//Proceedings of the 18th International Conference on Data Engineering. Piscataway: IEEE, 2002: 463-472. [66] TAO Y F, FALOUTSOS C, PAPADIAS D, et al. Prediction and indexing of moving objects with unknown motion patterns[C]//Proceedings of the 2004 ACM SIGMOD International Conference on Management of Data. New York: ACM, 2004: 611-622. [67] FANG Y, CAO J H, WANG J Z, et al. HTPR*-tree: an efficient index for moving objects to support predictive query and partial history query[C]//Proceedings of the 2012 International Workshops on Web-Age Information Management. Berlin, Heidelberg: Springer, 2012: 26-39. [68] SAMET H. The quadtree and related hierarchical data structures[J]. ACM Computing Surveys, 1984, 16(2): 187-260. [69] SONG Z X, ROUSSOPOULOS N. Hashing moving objects[C]//Proceedings of the 2001 International Conference on Mobile Data Management. Berlin, Heidelberg: Springer, 2001: 161-172. [70] SONG Z X, ROUSSOPOULOS N. SEB-tree: an approach to index continuously moving objects[C]//Proceedings of the 2002 International Conference on Mobile Data Management. Berlin, Heidelberg: Springer, 2002: 340-344. [71] BURTON F W, KOLLIAS J G, MATSAKIS D G, et al. Short note: implementation of overlapping B-trees for time and space efficient representation of collections of similar files[J]. The Computer Journal, 1990, 33(3): 279-280. [72] TAO Y, PAPADIAS D. The mv3r-tree: a spatio-temporal access method for timestamp and interval queries[C]//Proceedings of the 27th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2001: 431-440. [73] BECKER B, GSCHWIND S, OHLER T, et al. An asymptotically optimal multiversion B-tree[J]. The VLDB Journal, 1996, 5(4): 264-275. [74] NI J F, RAVISHANKAR C V. PA-tree: a parametric indexing scheme for spatio-temporal trajectories[C]//Advances in Spatial and Temporal Databases. Berlin, Heidelberg: Springer, 2005: 254-272. [75] CHEN X Y, ZHANG C, GE B, et al. Efficient historical query in HBase for spatio-temporal decision support[J]. International Journal of Computers Communications & Control, 2016, 11(5): 613. [76] 冯钧, 李顶圣, 陆佳民, 等. 基于HBase的路网移动对象时空索引方法[J]. 计算机应用, 2018, 38(6): 1575-1583. FENG J, LI D S, LU J M, et al. Spatio-temporal index method for moving objects in road network based on HBase[J]. Journal of Computer Applications, 2018, 38(6): 1575-1583. [77] SKOVSGAARD A, SIDLAUSKAS D, JENSEN C S. Scalable top-k spatio-temporal term querying[C]//Proceedings of the 2014 IEEE 30th International Conference on Data Engineering. Piscataway: IEEE, 2014: 148-159. [78] MAGDY A, ALY A M, MOKBEL M F, et al. GeoTrend: spatial trending queries on real-time microblogs[C]//Proceedings of the 24th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York: ACM, 2016: 1-10. [79] AHMED P, HASAN M, KASHYAP A, et al. Efficient computation of top-k frequent terms over spatio-temporal ranges[C]//Proceedings of the 2017 ACM International Conference on Management of Data. New York: ACM, 2017: 1227-1241. [80] 李晨, 申德荣, 寇月, 等. 多样性感知的时空文本信息的KNN查询处理方法[J]. 模式识别与人工智能, 2017, 30(1): 64-72. LI C, SHEN D R, KOU Y, et al. Diversity-aware KNN query processing approaches for temporal spatial textual content[J]. Pattern Recognition and Artificial Intelligence, 2017, 30(1): 64-72. [81] ZHENG K, SHANG S, YUAN N J, et al. Towards efficient search for activity trajectories[C]//Proceedings of the 2013 IEEE 29th International Conference on Data Engineering. Piscataway: IEEE, 2013: 230-241. [82] CHEN W, ZHAO L, XU J J, et al. Ranking based activity trajectory search[C]//Proceedings of the 15th International Conference on Web Information Systems Engineering. Cham: Springer, 2014: 170-185. [83] WANG S, BAO Z F, CULPEPPER J S, et al. Answering top-k exemplar trajectory queries[C]//Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering. Piscataway: IEEE, 2017: 597-608. [84] LIU H W, XU J J, ZHENG K, et al. Semantic-aware query processing for activity trajectories[C]//Proceedings of the 10th ACM International Conference on Web Search and Data Mining. New York: ACM, 2017: 283-292. [85] BLEI D M, NG A Y, JORDAN M I. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3: 993-1022. [86] GIONIS A, INDYK P, MOTWANI R. Similarity search in high dimensions via hashing[C]//Proceedings of the 25th International Conference on Very Large Data Bases. San Francisco: Morgan Kaufmann, 1999: 518-529. [87] WU X, YU J K, ZHAO X M. Spatio-temporal keyword query in semantic trajectories[J]. Frontiers of Computer Science, 2021, 16(2): 162602. [88] 孟祥福, 王丹丹, 张峰. 空间关键字查询综述[J]. 计算机工程与应用, 2021, 57(20): 13-24. MENG X F, WANG D D, ZHANG F. Overview of spatial keyword queries[J]. Computer Engineering and Applications, 2021, 57(20): 13-24. [89] ALMASLUKH A, LIU Y Y, MAGDY A. Scalable spatio-temporal top-k interaction queries on dynamic communities[J]. ACM Transactions on Spatial Algorithms and Systems, 2024, 10(1): 1-25. [90] SARAVANOS C, DRAKOPOULOS G, KANAVOS A, et al. Discovering influential twitter authors via clustering and ranking on apache storm[C]//Proceedings of the 2021 12th International Conference on Information, Intelligence, Systems & Applications. Piscataway: IEEE, 2021: 1-8. [91] YU Z, LIU Y, YU X, et al. Scalable distributed processing of k nearest neighbor queries over moving objects[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 27(5): 1383-1396. [92] CAI R C, LU Z J, WANG L, et al. DITIR: distributed index for high throughput trajectory insertion and real-time temporal range query[J]. Proceedings of the VLDB Endowment, 2017, 10(12): 1865-1868. [93] HAN L P, HUANG L, YANG X Y, et al. A novel spatio-temporal data storage and index method for ARM-based hadoop server[C]//Proceedings of the 2nd International Conference on Cloud Computing and Security. Cham: Springer, 2016: 206-216. [94] JACKINS C L, TANIMOTO S L. Oct-trees and their use in representing three-dimensional objects[J]. Computer Graphics and Image Processing, 1980, 14(3): 249-270. [95] WANG H Z, BELHASSENA A. Parallel trajectory search based on distributed index[J]. Information Sciences, 2017, 388: 62-83. [96] BARECHE I, XIA Y. A distributed hybrid indexing for continuous KNN query processing over moving objects[J]. ISPRS International Journal of Geo-Information, 2022, 11(4): 264. [97] ALI M E, EUSUF S S, ISLAM K A. An efficient index for contact tracing query in a large spatio-temporal database[EB/OL]. [2024-09-14]. https://arxiv.org/abs/2006.12812. [98] EUSUF S S, ISLAM K A, ALI M E, et al. A web-based system for efficient contact tracing query in a large spatio-temporal database[C]//Proceedings of the 28th International Conference on Advances in Geographic Information Systems. New York: ACM, 2020: 473-476. [99] LI Z H, ZUO J K, SONG M X, et al. Query and clustering of spatio-temporal trajectory big data under the background of COVID-19[C]//Proceedings of the 2021 1st International Conference on Control and Intelligent Robotics. New York: ACM, 2021: 676-680. [100] WANG Z, YUAN Y, CHANG L, et al. A graph-based visual query method for massive human trajectory data[J]. IEEE Access, 2019, 7: 160879-160888. [101] HUANG Z, ZHAO Y, CHEN W, et al. A natural-language-based visual query approach of uncertain human trajectories[J]. IEEE Transactions on Visualization and Computer Graphics, 2019, 26(1): 1256-1266. [102] WU S, PANG Z F, CHEN G, et al. NEIST: a neural- enhanced index for spatio-temporal queries[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4): 1659-1673. [103] LISI C, SHUO S, CHENGCHENG Y, et a1. Spatial keyword search: a survey[J]. Geolnformatica, 2020, 24(1): 85-106. [104] YANG M M, GUO T L, ZHU T Q, et al. Local differential privacy and its applications: a comprehensive survey[J]. Computer Standards & Interfaces, 2024, 89: 103827. [105] WU S, WANG X L, WANG S, et al. K-anonymity for crowdsourcing database[J]. IEEE Transactions on Knowledge and Data Engineering, 2014, 26(9): 2207-2221. [106] MIAO Y B, YANG Y T, LI X H, et al. Comprehensive survey on privacy-preserving spatial data query in transportation systems[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(12): 13603-13616. [107] WANG J B, CAI Z P, YU J G. Achieving personalized k-anonymity-based content privacy for autonomous vehicles in CPS[J]. IEEE Transactions on Industrial Informatics, 2020, 16(6): 4242-4251. [108] RODRIGUES S. The design of interactive spatio-temporal information visualization-a conceptual model[C]//Proceedings of the 2023 27th International Conference on Information Visualisation. Piscataway: IEEE, 2023: 155-160. [109] KRASKA T, BEUTEL A, CHI E H, et al. The case for learned index structures[C]//Proceedings of the 2018 International Conference on Management of Data. New York: ACM, 2018: 489-504. |
| [1] | 盛蕾, 陈希亮, 赖俊. 基于潜在状态分布GPT的离线多智能体强化学习方法[J]. 计算机科学与探索, 2024, 18(8): 2169-2179. |
| [2] | 锁啸天, 杨雅婷, 嵩天. 面向空间分布式计算的动态任务分解及长时保障机制[J]. 计算机科学与探索, 2024, 18(6): 1648-1660. |
| [3] | 白伊瑞, 田宁, 雷虹, 刘雪峰, 芦翔, 周勇. 基于DID的跨链身份认证研究综述[J]. 计算机科学与探索, 2024, 18(3): 597-611. |
| [4] | 胡程, 陈仕鸿. 分布式服务资源自适应弹性伸缩研究综述[J]. 计算机科学与探索, 2024, 18(10): 2551-2572. |
| [5] | 张才科, 李小龙, 郑胜, 蔡家骏, 叶小舟, 罗静. 基于大语言模型的知识图谱构建及应用研究[J]. 计算机科学与探索, 2024, 18(10): 2656-2667. |
| [6] | 张程东, 王绍卿, 刘玉芳, 郑顺, 孙福振. 采用新型元路径的异构图表示学习方法[J]. 计算机科学与探索, 2023, 17(7): 1680-1689. |
| [7] | 李婧瑶, 张倩, 赵展浩, 卢卫, 张孝, 杜小勇. 面向两段锁并发控制的RDMA优化技术[J]. 计算机科学与探索, 2023, 17(5): 1201-1209. |
| [8] | 李昕航, 李超, 张桂刚, 邢春晓. 区块链与数据库技术融合综述[J]. 计算机科学与探索, 2023, 17(4): 761-770. |
| [9] | 金磐石, 李博涵, 秦小麟, 邢磊, 李晓栋, 王进. 金融分布式数据库异步全局索引研究[J]. 计算机科学与探索, 2023, 17(11): 2784-2794. |
| [10] | 王群, 李馥娟, 倪雪莉, 夏玲玲, 王振力, 梁广俊. 区块链共识算法及应用研究[J]. 计算机科学与探索, 2022, 16(6): 1214-1242. |
| [11] | 赵海军, 贺春林, 蒲斌, 陈毅红. 覆盖模型的传感器网络寿命问题建模及其求解[J]. 计算机科学与探索, 2022, 16(3): 565-573. |
| [12] | 官铮, 胡扬, 杨志军, 何敏. 分布式WLAN全双工链路加权调度算法[J]. 计算机科学与探索, 2022, 16(2): 372-383. |
| [13] | 赵恒泰, 赵宇海, 袁野, 季航旭, 乔百友, 王国仁. 分布式环境下大规模维表关联技术优化[J]. 计算机科学与探索, 2022, 16(2): 337-347. |
| [14] | 李新春, 詹德川. 使用多分类器的分布式模型重用技术[J]. 计算机科学与探索, 2022, 16(10): 2310-2319. |
| [15] | 王贝贝, 万怀宇, 郭晟楠, 林友芳. 融合局部和全局时空特征的交通事故风险预测[J]. 计算机科学与探索, 2021, 15(9): 1694-1702. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||