计算机科学与探索 ›› 2025, Vol. 19 ›› Issue (8): 2001-2023.DOI: 10.3778/j.issn.1673-9418.2411033

• 前沿·综述 • 上一篇    下一篇

时空数据查询技术研究综述

孟祥福,翁雪,徐永杰   

  1. 辽宁工程技术大学 电子与信息工程学院,辽宁 葫芦岛 125105
  • 出版日期:2025-08-01 发布日期:2025-07-31

Review of Research on Spatio-Temporal Data Query Technologies

MENG Xiangfu, WENG Xue, XU Yongjie   

  1. School of Electronic and Information Engineering, Liaoning Technical University, Huludao, Liaoning 125105, China
  • Online:2025-08-01 Published:2025-07-31

摘要: 随着现代信息技术的快速发展与应用,时空数据的规模迅速增长。这些数据呈现出海量聚集、高维异构以及动态复杂等特点。近年来,以时空数据为背景的时空查询技术得到广泛的研究和应用,如何有效地存储、管理和查询这些数据成为了研究的重点。对时空数据的相关查询技术进行综述,从时空数据相关基本概念入手,系统阐述了当前主流的时空查询处理模式,涵盖了范围查询、K近邻查询、反K近邻查询等多种类型;介绍了不同的时空索引技术,包括基于轨迹的索引结构、基于抽样的索引以及其他创新的索引方法;分析了结合其他技术的查询方法,主要包括时空-文本查询、语义近似轨迹查询、并行和分布式查询等,这些技术不仅提升了时空查询的多样性和准确性,还能有效地处理大规模时空数据。展望了时空查询技术的未来发展方向,包括查询结果的可视化展示、隐私保护以及结合机器学习的新型索引结构,为时空数据的高效利用提供了新的思路和挑战。

关键词: 时空数据, 查询处理, 索引技术, 时空-文本, 语义近似, 分布式

Abstract: With the rapid development and application of modern information technology, the scale of spatio-temporal data has grown rapidly. These data exhibit characteristics such as massive aggregation, high dimensionality, heterogeneity, and dynamic complexity. In recent years, spatio-temporal query technologies based on spatio-temporal data have been widely researched and applied, making the effective storage, management, and querying of these data a key focus of research. This paper provides an overview of relevant query technologies for spatio-temporal data, starting with the basic concepts related to spatio-temporal data, systematically explaining the current mainstream spatio-temporal query processing models, including various types such as range queries, K-nearest neighbor queries, and reverse K-nearest neighbor queries. Subsequently, different spatio-temporal indexing techniques are introduced, including trajectory-based indexing structures, sampling-based indexing, and other innovative indexing methods. At the same time, querying methods that integrate other technologies are analyzed, mainly including spatio-temporal textual queries, semantic approximate trajectory queries, and parallel and distributed queries. These technologies not only enhance the diversity and accuracy of spatio-temporal queries but also effectively handle large-scale spatio-temporal data. Finally, the future development directions of spatio-temporal query technologies are discussed, including the visualization of query results, privacy protection, and new indexing structures that integrate machine learning, providing new ideas and challenges for the efficient utilization of spatio-temporal data.

Key words: spatio-temporal data, query processing, indexing techniques, spatio-temporal textual, semantic approximation, distributed