[1] Krizhevsky A, Sutskever I, Hinton G E. Imagenet classifica-tion with deep convolutional neural networks[J]. Communi-cations of the ACM, 2017, 60(6): 84-90.
[2] Collobert R, Weston J. A unified architecture for natural lan-guage processing: deep neural networks with multitask lear-ning[C]//Proceedings of the 25th International Conference on Machine Learning, Helsinki, Jul 5-9, 2008. New York: ACM, 2008: 160-167.
[3] Hinton G, Deng L, Yu D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97.
[4] Eykholt K, Evtimov I, Fernandes E, et al. Robust physical-world attacks on deep learning models[J]. arXiv:1707.08945, 2017.
[5] Carlini N, Wagner D A. Towards evaluating the robustness of neural networks[C]//Proceedings of the 2017 IEEE Sym-posium on Security and Privacy, San Jose, May 22-26, 2017. Washington: IEEE Computer Society, 2017: 39-57.
[6] Xiao C W, Zhu J Y, Li B, et al. Spatially transformed adver-sarial examples[J]. arXiv:1801.02612, 2018.
[7] Bhattad A, Chong M J, Liang K Z, et al. Big but imperceptible adversarial perturbations via semantic manipulation[J]. arXiv:1904.06347, 2019.
[8] Poursaeed O, Katsman I, Gao B C, et al. Generative adver-sarial perturbations[C]//Proceedings of the 2018 IEEE Con-ference on Computer Vision and Pattern Recognition, Salt Lake City, Jun 18-23, 2018. Washington: IEEE Computer Society, 2018: 4422-4431.
[9] Szegedy C, Zaremba W, Sutskever I, et al. Intriguing pro-perties of neural networks[J]. arXiv:1312.6199, 2013.
[10] Papernot N, McDaniel P D, Jha S, et al. The limitations of deep learning in adversarial settings[C]//Proceedings of the 2016 IEEE European Symposium on Security and Privacy, Saar-brücken, Mar 21-24, 2016. Piscataway: IEEE, 2016: 372-387.
[11] Moosavi-Dezfooli S M, Fawzi A, Frossard P. Deepfool: a simple and accurate method to fool deep neural networks[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 2574-2582.
[12] Goodfellow I J, Shlens J, Szegedy C. Explaining and harne-ssing adversarial examples[J]. arXiv:1412.6572, 2014.
[13] Zhao Z, Dua D, Singh S. Generating natural adversarial exa-mples[J]. arXiv:1710.11342, 2017.
[14] Wang Z, Bovik A C, Lu L G. Why is image quality assess-ment so difficult?[C]//Proceedings of the 2002 IEEE Inter-national Conference on Acoustics, Speech, and Signal Pro-cessing, Orlando, May 13-17, 2002. Piscataway: IEEE, 2002: 3313-3316.
[15] Goodfellow I J, Pouget-Abadie J, Mirza M M, et al. Genera-tive adversarial nets[C]//Proceedings of the 2014 Annual Conference on Neural Information Processing Systems, Mon-treal, Dec 8-13, 2014. Red Hook: Curran Associates, 2014: 2672-2680.
[16] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Con-ference on Computer Vision and Pattern Recognition, Las Vegas, Jun 27-30, 2016. Washington: IEEE Computer Society, 2016: 770-778.
[17] Ledig C, Theis L, Huszár F, et al. Photo-realistic single image super-resolution using a generative adversarial network[C]//Proceedings of the 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 105-114.
[18] Wang X T, Yu K, Wu S X, et al. ESRGAN: enhanced super-resolution generative adversarial networks[C]//LNCS 11133: Proceedings of the 2018 European Conference on Computer Vision, Munich, Sep 8-14, 2018. Berlin, Heidelberg: Springer, 2019: 63-79.
[19] Mahendran A, Vedaldi A. Understanding deep image repre-sentations by inverting them[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recogni-tion, Boston, Jun 7-12, 2015. Washington: IEEE Computer Society, 2015: 5188-5196.
[20] Bau D, Zhou B L, Khosla A, et al. Network dissection: quantifying interpretability of deep visual representations[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Jul 21-26, 2017. Washington: IEEE Computer Society, 2017: 3319-3327.
[21] Hochreiter S, Bengio Y, Frasconi P, et al. Gradient flow in recurrent nets: the difficulty of learning long-term depende-ncies[M]//Kolen J F, Kremer S C A. Field Guide to Dyna-mical Recurrent Networks. Piscataway: IEEE, 2001: 237-243.
[22] Pascanu R, Mikolov T, Bengio Y. On the difficulty of training recurrent neural networks[C]//Proceedings of the 30th Inter-national Conference on Machine Learning, Atlanta, Jun 16-21, 2013: 1310-1318.
[23] Sharma A, Al Haj M, Choi J, et al. Robust pose invariant face recognition using coupled latent space discriminant ana-lysis[J]. Computer Vision and Image Understanding, 2012, 116(11): 1095-1110.
[24] Le Y, Yang X. Tiny ImageNet visual recognition challenge: CS 231N[R]. Stanford, 2015. |